3,099 research outputs found

    From Doubled Chern-Simons-Maxwell Lattice Gauge Theory to Extensions of the Toric Code

    Get PDF
    We regularize compact and non-compact Abelian Chern-Simons-Maxwell theories on a spatial lattice using the Hamiltonian formulation. We consider a doubled theory with gauge fields living on a lattice and its dual lattice. The Hilbert space of the theory is a product of local Hilbert spaces, each associated with a link and the corresponding dual link. The two electric field operators associated with the link-pair do not commute. In the non-compact case with gauge group R\mathbb{R}, each local Hilbert space is analogous to the one of a charged "particle" moving in the link-pair group space R2\mathbb{R}^2 in a constant "magnetic" background field. In the compact case, the link-pair group space is a torus U(1)2U(1)^2 threaded by kk units of quantized "magnetic" flux, with kk being the level of the Chern-Simons theory. The holonomies of the torus U(1)2U(1)^2 give rise to two self-adjoint extension parameters, which form two non-dynamical background lattice gauge fields that explicitly break the manifest gauge symmetry from U(1)U(1) to Z(k)\mathbb{Z}(k). The local Hilbert space of a link-pair then decomposes into representations of a magnetic translation group. In the pure Chern-Simons limit of a large "photon" mass, this results in a Z(k)\mathbb{Z}(k)-symmetric variant of Kitaev's toric code, self-adjointly extended by the two non-dynamical background lattice gauge fields. Electric charges on the original lattice and on the dual lattice obey mutually anyonic statistics with the statistics angle 2Ď€k\frac{2 \pi}{k}. Non-Abelian U(k)U(k) Berry gauge fields that arise from the self-adjoint extension parameters may be interesting in the context of quantum information processing.Comment: 38 pages, 4 figure

    From the SU(2)SU(2) Quantum Link Model on the Honeycomb Lattice to the Quantum Dimer Model on the Kagom\'e Lattice: Phase Transition and Fractionalized Flux Strings

    Full text link
    We consider the (2+1)(2+1)-d SU(2)SU(2) quantum link model on the honeycomb lattice and show that it is equivalent to a quantum dimer model on the Kagom\'e lattice. The model has crystalline confined phases with spontaneously broken translation invariance associated with pinwheel order, which is investigated with either a Metropolis or an efficient cluster algorithm. External half-integer non-Abelian charges (which transform non-trivially under the Z(2)\mathbb{Z}(2) center of the SU(2)SU(2) gauge group) are confined to each other by fractionalized strings with a delocalized Z(2)\mathbb{Z}(2) flux. The strands of the fractionalized flux strings are domain walls that separate distinct pinwheel phases. A second-order phase transition in the 3-d Ising universality class separates two confining phases; one with correlated pinwheel orientations, and the other with uncorrelated pinwheel orientations.Comment: 16 pages, 20 figures, 2 tables, two more relevant references and one short paragraph are adde

    From the SU(2)SU(2) Quantum Link Model on the Honeycomb Lattice to the Quantum Dimer Model on the Kagom\'e Lattice: Phase Transition and Fractionalized Flux Strings

    Full text link
    We consider the (2+1)(2+1)-d SU(2)SU(2) quantum link model on the honeycomb lattice and show that it is equivalent to a quantum dimer model on the Kagom\'e lattice. The model has crystalline confined phases with spontaneously broken translation invariance associated with pinwheel order, which is investigated with either a Metropolis or an efficient cluster algorithm. External half-integer non-Abelian charges (which transform non-trivially under the Z(2)\mathbb{Z}(2) center of the SU(2)SU(2) gauge group) are confined to each other by fractionalized strings with a delocalized Z(2)\mathbb{Z}(2) flux. The strands of the fractionalized flux strings are domain walls that separate distinct pinwheel phases. A second-order phase transition in the 3-d Ising universality class separates two confining phases; one with correlated pinwheel orientations, and the other with uncorrelated pinwheel orientations.Comment: 16 pages, 20 figures, 2 tables, two more relevant references and one short paragraph are adde

    Confinement effects from interacting chromo-magnetic and axion fields

    Full text link
    We study a non-Abelian gauge theory with a pseudo scalar coupling \phi \epsilon ^{\mu \nu \alpha \beta} F_{\mu \nu}^a F_{\alpha \beta}^a in the case where a constant chromo-electric, or chromo-magnetic, strength expectation value is present. We compute the interaction potential within the framework of gauge-invariant, path-dependent, variables formalism. While in the case of a constant chromo-electric field strength expectation value the static potential remains Coulombic, in the case of a constant chromo-magnetic field strength the potential energy is the sum of a Coulombic and a linear potentials, leading to the confinement of static charges.Comment: 12 pages, no figures, published versio

    Erfaringsopsamling for muslingeopdræt i Danmark

    Get PDF

    Scale Free Cluster Distributions from Conserving Merging-Fragmentation Processes

    Full text link
    We propose a dynamical scheme for the combined processes of fragmentation and merging as a model system for cluster dynamics in nature and society displaying scale invariant properties. The clusters merge and fragment with rates proportional to their sizes, conserving the total mass. The total number of clusters grows continuously but the full time-dependent distribution can be rescaled over at least 15 decades onto a universal curve which we derive analytically. This curve includes a scale free solution with a scaling exponent of -3/2 for the cluster sizes.Comment: 4 pages, 3 figure

    Competition between Diffusion and Fragmentation: An Important Evolutionary Process of Nature

    Full text link
    We investigate systems of nature where the common physical processes diffusion and fragmentation compete. We derive a rate equation for the size distribution of fragments. The equation leads to a third order differential equation which we solve exactly in terms of Bessel functions. The stationary state is a universal Bessel distribution described by one parameter, which fits perfectly experimental data from two very different system of nature, namely, the distribution of ice crystal sizes from the Greenland ice sheet and the length distribution of alpha-helices in proteins.Comment: 4 pages, 3 figures, (minor changes
    • …
    corecore