4 research outputs found

    Research into usage efficiency of the pulsation machine with a vibrating rotor for milk homogenization

    Get PDF
    The modification of rotor-pulsation machine – pulsation machine with a vibrating rotor (PM with VR) has been researched in the work. Rotor in such modification not only rotates but also oscillates axially with the frequency about 3000 min-1 and amplitude 0,5–1,0 mm. The aim of this research was to define specific features of milk homogenization process in PM with VR and disperse characteristics of milk emulsion. Analytical researches resulted in finding dependence of milk emulsion acceleration as a main factor of milk fat particles breakup subject to the design and kinematic parameters of PM with VR. Experimental researches were carried out on the laboratory setup of the pulsation machine with a vibrating rotor which was designed by the authors. The subject of experimental researches is cow’s milk. The sizes of milk fat globules after homogenization were measured by the optical microscope equipped with a digital camera. The researches resulted in defining characteristics of milk emulsion dispersing in PM with VR. Thus acceleration grows when diameter, oscillation amplitude and rotation frequency of the rotor are increased, and channels length of the rotor and stator, the gap between them are decreased and the number of rotor openings is 4 or less. Empirical dependence between the average diameter of the fat globule (0,7–1,9 ΞΌm) and the average emulsion acceleration ((1–10)Γ—103 m/s2) in the interrupter of PM with VR is defined which proves that the emulsion flow acceleration is the main cause of homogenization of PM with VR with 92 % confidence. High quality of the milk emulsion after processing in PM with VR has been proved. The crankshaft rotation frequencies up to 2880 rpm and rotor oscillation amplitude of 1 mm enable to receive milk emulsion with the average dispersion about 0,8 ΞΌm that corroborates using PM with VR in the industrial conditions for milk homogenization to be perspective

    Determining the Quality of Milk Fat Dispersion in A Jet-slot Milk Homogenizer

    Full text link
    One of the urgent problems in the dairy industry is to reduce power input in the process of dispersing milk fat while ensuring a high degree of homogenization. This problem can be solved through the development and implementation of a virtually unexplored jet-slot milk homogenizer. The principle of its action implies the preliminary separation of cream from whole milk and its feed into the high-velocity flow of skim milk. The homogenization process occurs by creating a sufficient difference in velocities of the disperse and dispersing phases of the milk emulsion, which is mathematically described by Weber's criterion.Experimental studies of the effect of fat content in cream, cream feed rate, and width of the annular slot on dispersion indices during processing in the designed homogenizer have been carried out. The mathematical dependence which relates these parameters was found. It was proved that to obtain a milk emulsion with a dispersion level of 0.8 ΞΌm, the width of the annular slot should be 0.1–0.5 mm, fat content in cream 40–50 %, and the feed rate less than 40 m/s. The results of the evaluation of dispersion quality show a 7 % decrease in the average diameter of the fat globules compared to the most common values obtainable in the valve homogenizer. A refined critical value of the Weber criterion for dispersion of the fat phase of milk was determined (29 units) which indicates an increase in the intensity of the homogenization process in comparison with the jet milk homogenizer with a separate cream feed. The derived critical value of the criterion is necessary to create a theory of the process of dispersing milk fat and develop more efficient designs of milk homogenizer

    Determination of fat milk dispersion quality in the jet-slot type milk homogenizer

    No full text
    One of the urgent problems in the dairy industry is to reduce power input in the process of dispersing milk fat while ensuring a high degree of homogenization. This problem can be solved through the development and implementation of a virtually unexplored jet-slot milk homogenizer. The principle of its action implies the preliminary separation of cream from whole milk and its feed into the high-velocity flow of skim milk. The homogenization process occurs by creating a sufficient difference in velocities of the disperse and dispersing phases of the milk emulsion, which is mathematically described by Weber's criterion. Experimental studies of the effect of fat content in cream, cream feed rate, and width of the annular slot on dispersion indices during processing in the designed homogenizer have been carried out. The mathematical dependence which relates these parameters was found. It was proved that to obtain a milk emulsion with a dispersion level of 0.8 ΞΌm, the width of the annular slot should be 0.1–0.5 mm, fat content in cream 40–50 %, and the feed rate less than 40 m/s. The results of the evaluation of dispersion quality show a 7 % decrease in the average diameter of the fat globules compared to the most common values obtainable in the valve homogenizer. A refined critical value of the Weber criterion for dispersion of the fat phase of milk was determined (29 units) which indicates an increase in the intensity of the homogenization process in comparison with the jet milk homogenizer with a separate cream feed. The derived critical value of the criterion is necessary to create a theory of the process of dispersing milk fat and develop more efficient designs of milk homogenizers

    Elaboration of the research method for milk dispersion in the jet slot type homogenizer

    Get PDF
    The competitiveness improvement of milk products is directly connected with a problem of decreasing energy consumption of the process of milk emulsion dispersion. At creating promising types of energy effective dispersers, a necessary condition is to elaborate a correct methodology for studying them that takes into account the specificity of the process of fat milk microemulsion dispersion. Based on the critical analysis of research methods for homogenizers of different types, there have been determined main directions of their improvement, taken into account in the elaborated research method for a promising jet-slot type milk homogenizer. The method of theoretical studies, including a choice and analysis of stable and changeable factors of the homogenization process in a jet-slot type homogenizer and optimization criteria, has been elaborated. The interconnection of technological, constructive, hydraulic parameters with a dispersion quality has been demonstrated. The influence of physical-mechanical properties of milk as a research object was taken into account. An optimal milk temperature was chosen for the studies. Factor variation limits have been substantiated. The constructive scheme of a chamber for the experimental homogenizer has been developed. At processing the experimental research methodology, the main stage was to develop an experimental set for studying the influence of changeable factors of the dispersion process on a homogenization quality. Dispersion quality estimation methods have been analyzed and the method of microphotography has been chosen with further computed analysis of obtained data. The elaborated methodology was used at studying the influence of cream fat and ring slot width on a dispersion quality in a jet-slot type homogenizer. The obtained data allow to determine rational parameters of cream fat – 40–50 % and slot width – 0.1 mm. The analysis of dispersed characteristics of the milk emulsion allows to make a conclusion about the high homogenization quality, comparing with processing in a valve homogenizer
    corecore