34 research outputs found

    Boundary Layer Transition and Trip Effectiveness on an Apollo Capsule in the JAXA High Enthalpy Shock Tunnel (HIEST) Facility

    Get PDF
    Computational assessments were performed to size boundary layer trips for a scaled Apollo capsule model in the High Enthalpy Shock Tunnel (HIEST) facility at the JAXA Kakuda Space Center in Japan. For stagnation conditions between 2 MJ/kg and 20 MJ/kg and between 10 MPa and 60 MPa, the appropriate trips were determined to be between 0.2 mm and 1.3 mm high, which provided kappa/delta values on the heatshield from 0.15 to 2.25. The tripped configuration consisted of an insert with a series of diamond shaped trips along the heatshield downstream of the stagnation point. Surface heat flux measurements were obtained on a capsule with a 250 mm diameter, 6.4% scale model, and pressure measurements were taken at axial stations along the nozzle walls. At low enthalpy conditions, the computational predictions agree favorably to the test data along the heatshield centerline. However, agreement becomes less favorable as the enthalpy increases conditions. The measured surface heat flux on the heatshield from the HIEST facility was under-predicted by the computations in these cases. Both smooth and tripped configurations were tested for comparison, and a post-test computational analysis showed that kappa/delta values based on the as-measured stagnation conditions ranged between 0.5 and 1.2. Tripped configurations for both 0.6 mm and 0.8 mm trip heights were able to effectively trip the flow to fully turbulent for a range of freestream conditions

    Aeroheating Measurement of Apollo Shaped Capsule with Boundary Layer Trip in the Free-piston Shock Tunnel HIEST

    Get PDF
    An aeroheating measurement test campaign of an Apollo capsule model with laminar and turbulent boundary layer was performed in the free-piston shock tunnel HIEST at JAXA Kakuda Space Center. A 250mm-diameter 6.4%-scaled Apollo CM capsule model made of SUS-304 stainless steel was applied in this study. To measure heat flux distribution, the model was equipped with 88 miniature co-axial Chromel-Constantan thermocouples on the heat shield surface of the model. In order to promote boundary layer transition, a boundary layer trip insert with 13 "pizza-box" isolated roughness elements, which have 1.27mm square, were placed at 17mm below of the model geometric center. Three boundary layer trip inserts with roughness height of k=0.3mm, 0.6mm and 0.8mm were used to identify the appropriate height to induce transition. Heat flux records with or without roughness elements were obtained for model angles of attack 28 under stagnation enthalpy between H(sub 0)=3.5MJ/kg to 21MJ/kg and stagnation pressure between P(sub 0)=14MPa to 60MPa. Under the condition above, Reynolds number based on the model diameter was varied from 0.2 to 1.3 million. With roughness elements, boundary layer became fully turbulent less than H(sub 0)=9MJ/kg condition. However, boundary layer was still laminar over H(sub 0)=13MJ/kg condition even with the highest roughness elements. An additional experiment was also performed to correct unexpected heat flux augmentation observed over H(sub 0)=9MJ/kg condition

    Measurement of Ultraviolet Radiative Heating Augmentation in HIEST Reflected Shock Tunnel

    Get PDF
    Radiance measurements in air at enthalpies from 8-20 MJkg have been made over a 250mm diameter flat-faced test article in Japan Aerospace Exploration Agency's HIgh-Enthalpy Shock Tunnel (HIEST). Measurements were made in the ultraviolet region (200-400 nm wavelength) in an attempt to resolve the long-standing discrepancy between theoryand measurements of heat flux over a blunt body; this discrepancy is often attributed toradiation. The spectra obtained indicate the presence of atomic iron vapor in the flowfield.At the highest enthalpies, the radiance is at the blackbody limit. An attempt to model theradiance is made by taking a nominal CFD flowfield without any contamination productsand processing it through a line-by-line radiation simulation tool. Iron vapor is introducedinto the shocked gas ahead of the model and radiation computations are repeated; the molefraction of iron vapor is adjusted to match the data. For the higher enthalpy conditions, theradiance was strongly absorbed and it was necessary to adjust the temperature and NOdensity in the freestream to match the signal below 300 nm. Once the observed spectrawere satisfactorily matched, the radiance to the stagnation point was then computed. It isshown that the impurity radiation is sufficiently large to explain the discrepancy

    Systems Analysis for a Venus Aerocapture Mission

    Get PDF
    Previous high level analysis has indicated that significant mass savings may be possible for planetary science missions if aerocapture is employed to place a spacecraft in orbit. In 2001 the In-Space Propulsion program identified aerocapture as one of the top three propulsion technologies for planetary exploration but that higher fidelity analysis was required to verify the favorable results and to determine if any supporting technology gaps exist that would enable or enhance aerocapture missions. A series of three studies has been conducted to assess, from an overall system point of view, the merit of using aerocapture at Titan, Neptune and Venus. These were chosen as representative of a moon with an atmosphere, an outer giant gas planet and an inner planet. The Venus mission, based on desirable science from plans for Solar System Exploration and Principal Investigator proposals, to place a spacecraft in a 300km polar orbit was examined and the details of the study are presented in this paper

    Use of the Hartley transform in systems analysis as applied to electric power quality assessment

    No full text
    The Hartley transform is a real transformation which is closely related to the familiar Fourier transform. Because the Fourier transform causes the convolution operation to become a simple complex product, it has been used to solve a wide range of engineering problems including electric circuits problems in general, and power system problems in particular. In this work, a similar convolution property of the Hartley transform is used to calculate transients and nonsinusoidal waveshape propagation in electric power systems. The importance of this type of calculation relates to the impact of loads, particularly electronic loads, whose demand currents are nonsinusoidal. The method described is most applicable to cases in which frequency band limits occur (i.e., in low frequency applications, e.g., 3-5 kHz). For this reason, as well as the importance of power quality calculations, the method is of most interest to the power engineering community. Examples are presented in which the Hartley transform is used to assess the impact of an electronic load with a demand which contains rapidly changing current. This work also presents a general introduction to the use of the Hartley transform and series for electric circuit analysis. A discussion of the error characteristics of discrete Hartley solutions is presented. Because the Hartley transform is a real transformation, it is more computationally efficient than the Fourier or Laplace transforms. It is not a conclusion that the Hartley transform should replace familiar Fourier nor Laplace methods; however, it is concluded that the Hartley transform is a very useful alternative in the rapid calculation of wide bandwidth signal propagation phenomena

    Shock-Wave/Boundary-Layer Interactions in Hypersonic Low Density Flows

    No full text
    Results of numerical simulations of Mach 10 air flow over a hollow cylinder-flare and a double-cone are presented where viscous effects are significant. The flow phenomena include shock-shock and shock- boundary-layer interactions with accompanying flow separation, recirculation, and reattachment. The purpose of this study is to promote an understanding of the fundamental gas dynamics resulting from such complex interactions and to clarify the requirements for meaningful simulations of such flows when using the direct simulation Monte Carlo (DSMC) method. Particular emphasis is placed on the sensitivity of computed results to grid resolution. Comparisons of the DSMC results for the hollow cylinder-flare (30 deg.) configuration are made with the results of experimental measurements conducted in the ONERA RSCh wind tunnel for heating, pressure, and the extent of separation. Agreement between computations and measurements for various quantities is good except that for pressure. For the same flow conditions, the double- cone geometry (25 deg.- 65 deg.) produces much stronger interactions, and these interactions are investigated numerically using both DSMC and Navier-Stokes codes. For the double-cone computations, a two orders of magnitude variation in free-stream density (with Reynolds numbers from 247 to 24,7 19) is investigated using both computational methods. For this range of flow conditions, the computational results are in qualitative agreement for the extent of separation with the DSMC method always predicting a smaller separation region. Results from the Navier-Stokes calculations suggest that the flow for the highest density double-cone case may be unsteady; however, the DSMC solution does not show evidence of unsteadiness
    corecore