21 research outputs found

    The Estimation of Losses of the Russian Economy from Population Migration to Developed Countries in 2000-2017

    Get PDF
    The problem of emigration of Russian citizens to other countries remained quite acute during 2000-2017. This poses a threat to national security, as there are many economically active young people with a high level of education among the emigrants. Therefore, it is required a comprehensive study of these processes and the creation of conditions for the preservation of human capital in Russia. The authors developed a methodology for assessing the losses of the Russian economy in value terms as a result of emigration of citizens abroad. It is based on the determination of the 'cost' of human life and the individualization of this indicator in accordance with the level of economic development of the host country and with the subjective factors of the emigrant, as well as in specifying the number of citizens who left the Russian Federation in accordance with the official data of foreign migration services. As a result of the calculations, it was determined that the losses of the Russian economy from this phenomenon for the period 2000-2017 amounted to more than 545.85 billion USD. Such a situation is unacceptable in the conditions of the country's unfolding competition with other states for the positions of leaders in the new industrial revolution. It is necessary to carry out systematic work to reduce the scale of outgoing flows of international labour migration from Russia

    Широкополосный Π²ΠΎΠ»Π½ΠΎΠ²ΠΎΠ΄Π½ΠΎ-микрополосковый ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄ Π·ΠΎΠ½Π΄ΠΎΠ²ΠΎΠ³ΠΎ Ρ‚ΠΈΠΏΠ° ΠΌΠΈΠ»Π»ΠΈΠΌΠ΅Ρ‚Ρ€ΠΎΠ²ΠΎΠ³ΠΎ Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π° Π΄Π»ΠΈΠ½ Π²ΠΎΠ»Π½

    Get PDF
    Introduction. Increased data rate in modern communication systems can be achieved by raising the operational frequency to millimeter wave range where wide transmission bands are available. In millimeter wave communication systems, the passive components of the antenna feeding system, which are based on hollow metal waveguides, and active elements of the radiofrequency circuit, which have an interface constructed on planar printed circuit boards (PCB) are interconnected using waveguide-to-microstrip transition.Aim. To design and investigate a high-performance wideband and low loss waveguide-to-microstrip transition dedicated to the 60 GHz frequency range applications that can provide effective transmission of signals between the active components of the radiofrequency circuit and the passive components of the antenna feeding systemMaterials and methods. Full-wave electromagnetic simulations in the CST Microwave Studio software were used to estimate the impact of the substrate material and metal foil on the characteristics of printed structures and to calculate the waveguide-to-microstrip transition characteristics. The results were confirmed via experimental investigation of fabricated wideband transition samples using a vector network analyzer Results. The probe-type transition consist of a PCB fixed between a standard WR-15 waveguide and a back-short with a simple structure and the same cross-section. The proposed transition also includes two through-holes on the PCB in the center of the transition area on either side of the probe. A significant part of the lossy PCB dielectric is removed from that area, thus providing wideband and low-loss performance of the transition without any additional matching elements. The design of the transition was adapted for implementation on the PCBs made of two popular dielectric materials RO4350B and RT/Duroid 5880. The results of full-wave simulation and experimental investigation of the designed waveguide to microstrip transition are presented. The transmission bandwidth for reflection coefficient S11 < –10 dB is in excess of 50…70 GHz. The measured insertion loss for a single transition is 0.4 and 0.7 dB relatively for transitions based on RO4350B and RT/Duroid 5880.Conclusion. The proposed method of insertion loss reduction in the waveguide-to-microstrip transition provides effective operation due to reduction of the dielectric substrate portion in the transition region for various high-frequency PCB materials. The designed waveguide-to -microstrip transition can be considered as an effective solution for interconnection between the waveguide and microstrip elements of the various millimeter-wave devices dedicated for the 60 GHz frequency range applications.Π’Π²Π΅Π΄Π΅Π½ΠΈΠ΅. Для увСличСния скорости ΠΏΠ΅Ρ€Π΅Π΄Π°Ρ‡ΠΈ Π΄Π°Π½Π½Ρ‹Ρ… Π² соврСмСнных систСмах бСспроводной радиосвязи Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ сущСствСнноС Ρ€Π°ΡΡˆΠΈΡ€Π΅Π½ΠΈΠ΅ полосы частот ΠΏΠ΅Ρ€Π΅Π΄Π°Π²Π°Π΅ΠΌΡ‹Ρ… сигналов, Ρ‡Ρ‚ΠΎ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ Π·Π° счСт увСличСния Ρ€Π°Π±ΠΎΡ‡Π΅ΠΉ частоты Π΄ΠΎ ΠΌΠΈΠ»Π»ΠΈΠΌΠ΅Ρ‚Ρ€ΠΎΠ²ΠΎΠ³ΠΎ Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π°. Π’ систСмах радиосвязи ΠΌΠΈΠ»Π»ΠΈΠΌΠ΅Ρ‚Ρ€ΠΎΠ²ΠΎΠ³ΠΎ Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π° соСдинСниС пассивных элСмСнтов Π°Π½Ρ‚Π΅Π½Π½ΠΎ-Ρ„ΠΈΠ΄Π΅Ρ€Π½ΠΎΠ³ΠΎ Ρ‚Ρ€Π°ΠΊΡ‚Π°, Ρ€Π΅Π°Π»ΠΈΠ·ΠΎΠ²Π°Π½Π½Ρ‹Ρ… Π½Π° мСталличСских Π²ΠΎΠ»Π½ΠΎΠ²ΠΎΠ΄Π°Ρ…, ΠΈ Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹Ρ… элСмСнтов радиочастотного Ρ‚Ρ€Π°ΠΊΡ‚Π°, ΠΈΠΌΠ΅ΡŽΡ‰ΠΈΡ… интСрфСйс Π½Π° основС микрополосковых Π»ΠΈΠ½ΠΈΠΉ, осущСствляСтся с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Π²ΠΎΠ»Π½ΠΎΠ²ΠΎΠ΄Π½ΠΎ-микрополоскового ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄Π° (Π’ΠœΠŸΠŸ).ЦСль Ρ€Π°Π±ΠΎΡ‚Ρ‹. Π Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° ΠΈ исслСдованиС ΡˆΠΈΡ€ΠΎΠΊΠΎΠΏΠΎΠ»ΠΎΡΠ½ΠΎΠ³ΠΎ Π’ΠœΠŸΠŸ для частотного Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π° 60 Π“Π“Ρ† с Π½ΠΈΠ·ΠΊΠΈΠΌ ΡƒΡ€ΠΎΠ²Π½Π΅ΠΌ ΠΏΠΎΡ‚Π΅Ρ€ΡŒ для эффСктивной ΠΏΠ΅Ρ€Π΅Π΄Π°Ρ‡ΠΈ сигналов ΠΌΠ΅ΠΆΠ΄Ρƒ Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹ΠΌΠΈ элСмСнтами радиочастотного Ρ‚Ρ€Π°ΠΊΡ‚Π° ΠΈ пассивными элСмСнтами Π°Π½Ρ‚Π΅Π½Π½ΠΎΠ³ΠΎ Ρ‚Ρ€Π°ΠΊΡ‚Π°.ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹. ΠžΡ†Π΅Π½ΠΊΠ° влияния ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π° ΠΏΠΎΠ΄Π»ΠΎΠΆΠΊΠΈ ΠΈ свойств мСталличСской Ρ„ΠΎΠ»ΡŒΠ³ΠΈ Π½Π° характСристики ΠΏΠ΅Ρ‡Π°Ρ‚Π½Ρ‹Ρ… структур ΠΈ расчСт характСристик Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½ΠΎΠ³ΠΎ ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄Π° Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½Ρ‹ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ элСктродинамичСского модСлирования Π² систСмС Π°Π²Ρ‚ΠΎΠΌΠ°Ρ‚ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ проСктирования CST Microwave Studio ΠΈ ΠΏΠΎΠ΄Ρ‚Π²Π΅Ρ€ΠΆΠ΄Π΅Π½Ρ‹ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π°ΠΌΠΈ ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ исслСдования ΠΈΠ·Π³ΠΎΡ‚ΠΎΠ²Π»Π΅Π½Π½Ρ‹Ρ… ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ² ΡˆΠΈΡ€ΠΎΠΊΠΎΠΏΠΎΠ»ΠΎΡΠ½ΠΎΠ³ΠΎ Π²ΠΎΠ»Π½ΠΎΠ²ΠΎΠ΄Π½ΠΎ-микрополоскового ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄Π° Π½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠΌ Π°Π½Π°Π»ΠΈΠ·Π°Ρ‚ΠΎΡ€Π΅ Ρ†Π΅ΠΏΠ΅ΠΉ.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. Π Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½Ρ‹ΠΉ Π’ΠœΠŸΠŸ основан Π½Π° использовании проводящСго Π·ΠΎΠ½Π΄Π°, Ρ€Π΅Π°Π»ΠΈΠ·ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ Π½Π° ΠΏΠ΅Ρ‡Π°Ρ‚Π½ΠΎΠΉ ΠΏΠ»Π°Ρ‚Π΅, Π·Π°ΠΊΡ€Π΅ΠΏΠ»Π΅Π½Π½ΠΎΠΉ ΠΌΠ΅ΠΆΠ΄Ρƒ стандартным подводящим Π²ΠΎΠ»Π½ΠΎΠ²ΠΎΠ΄ΠΎΠΌ WR15 ΠΈ Ρ‡Π΅Ρ‚Π²Π΅Ρ€Ρ‚ΡŒΠ²ΠΎΠ»Π½ΠΎΠ²ΠΎΠΉ Π·Π°Π³Π»ΡƒΡˆΠΊΠΎΠΉ Ρ‚ΠΎΠ³ΠΎ ΠΆΠ΅ сСчСния. Для ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½ΠΈΡ ΠΏΠΎΡ‚Π΅Ρ€ΡŒ Π² ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄Π΅ Π½Π° ΠΏΠ΅Ρ‡Π°Ρ‚Π½ΠΎΠΉ ΠΏΠ»Π°Ρ‚Π΅ Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½Ρ‹ сквозныС Π½Π΅ΠΌΠ΅Ρ‚Π°Π»Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Π΅ отвСрстия, симмСтрично располоТСнныС Π²ΠΎΠΊΡ€ΡƒΠ³ Π·ΠΎΠ½Π΄Π° для ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½ΠΈΡ Π΄ΠΎΠ»ΠΈ диэлСктрика ΠΏΠ΅Ρ‡Π°Ρ‚Π½ΠΎΠΉ ΠΏΠ»Π°Ρ‚Ρ‹ Π² Π²ΠΎΠ»Π½ΠΎΠ²ΠΎΠ΄Π½ΠΎΠΌ ΠΊΠ°Π½Π°Π»Π΅. По Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π°ΠΌ ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ исслСдования ΠΈΠ·Π³ΠΎΡ‚ΠΎΠ²Π»Π΅Π½Π½Ρ‹Ρ… ΠΌΠ°ΠΊΠ΅Ρ‚ΠΎΠ² ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄ΠΎΠ², Ρ€Π΅Π°Π»ΠΈΠ·ΠΎΠ²Π°Π½Π½Ρ‹Ρ… Π½Π° ΠΏΠ΅Ρ‡Π°Ρ‚Π½Ρ‹Ρ… ΠΏΠ»Π°Ρ‚Π°Ρ…, Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½Π½Ρ‹Ρ… ΠΈΠ· ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ² RO4350B ΠΈ RT/Duroid 5880 производства ΠΊΠΎΠΌΠΏΠ°Π½ΠΈΠΈ "Rogers", Π±Ρ‹Π»ΠΎ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½ΠΎ, Ρ‡Ρ‚ΠΎ ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄ согласован ΠΏΠΎ ΡƒΡ€ΠΎΠ²Π½ΡŽ коэффициСнта отраТСния S11 <-10 Π΄Π‘ Π² полосС частот 50...70 Π“Π“Ρ† ΠΈ обСспСчиваСт ΠΏΠΎΡ‚Π΅Ρ€ΠΈ Π½Π° ΠΏΡ€ΠΎΡ…ΠΎΠΆΠ΄Π΅Π½ΠΈΠ΅ Π½Π΅ Π±ΠΎΠ»Π΅Π΅ 0.4 ΠΈ 0.7 Π΄Π‘ для ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ² RT/Duroid 5880 ΠΈ RO4350B соотвСтствСнно.Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅. ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π½Ρ‹ΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ сниТСния ΠΏΠΎΡ‚Π΅Ρ€ΡŒ Π² Π²ΠΎΠ»Π½ΠΎΠ²ΠΎΠ΄Π½ΠΎ-микрополосковом ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄Π΅ осущСствляСтся Π·Π° счСт ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½ΠΈΡ влияния диэлСктричСской ΠΏΠΎΠ΄Π»ΠΎΠΆΠΊΠΈ ΠΏΡ€ΠΈ использовании Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… Π‘Π’Π§-ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ² ΠΏΠ΅Ρ‡Π°Ρ‚Π½Ρ‹Ρ… ΠΏΠ»Π°Ρ‚. Π­Ρ‚ΠΎ позволяСт Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°Ρ‚ΡŒ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½Ρ‹ΠΉ Π²ΠΎΠ»Π½ΠΎΠ²ΠΎΠ΄Π½ΠΎ-микрополосковый ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄ ΠΊΠ°ΠΊ пСрспСктивный для соСдинСния Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… микрополосковых ΠΈ Π²ΠΎΠ»Π½ΠΎΠ²ΠΎΠ΄Π½Ρ‹Ρ… устройств ΠΌΠΈΠ»Π»ΠΈΠΌΠ΅Ρ‚Ρ€ΠΎΠ²ΠΎΠ³ΠΎ Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π° Π΄Π»ΠΈΠ½ Π²ΠΎΠ»Π½

    The ATLAS inner detector trigger performance in pp collisions at 13 TeV during LHC Run 2

    Get PDF
    The design and performance of the inner detector trigger for the high level trigger of the ATLAS experiment at the Large Hadron Collider during the 2016-18 data taking period is discussed. In 2016, 2017, and 2018 the ATLAS detector recorded 35.6 fbβˆ’1^{-1}, 46.9 fbβˆ’1^{-1}, and 60.6 fbβˆ’1^{-1} respectively of proton-proton collision data at a centre-of-mass energy of 13 TeV. In order to deal with the very high interaction multiplicities per bunch crossing expected with the 13 TeV collisions the inner detector trigger was redesigned during the long shutdown of the Large Hadron Collider from 2013 until 2015. An overview of these developments is provided and the performance of the tracking in the trigger for the muon, electron, tau and bb-jet signatures is discussed. The high performance of the inner detector trigger with these extreme interaction multiplicities demonstrates how the inner detector tracking continues to lie at the heart of the trigger performance and is essential in enabling the ATLAS physics programme

    Effects of structure-dynamics correlation on hierarchical transitions in heterogeneous oscillatory networks

    No full text
    The impact of frequency-degree and amplitude-degree correlation is studied for heterogeneous networks of coupled Stuart–Landau oscillators. It is shown that increasing coupling strength gives rise to hierarchical processes of oscillation quenching. In case of frequency-degree correlated networks, higher-frequency oscillators gradually become almost quenched while low-frequency ones still remain oscillating. In case of amplitude-degree correlated networks, there appear three distinct domains, two contain low-amplitude oscillations with positive and negative means, and the third includes high-amplitude oscillations around the origin
    corecore