54 research outputs found

    Automation Concepts for Industrial-Scale Production of Seaweed

    Get PDF
    In order to industrialize macroalgal cultivation in Norway, new automated methods and solutions for seeding, deployment and harvesting need to be developed. Today's solutions are time and resource demanding, still yielding volumes nationally in the range of 100–200 tons per year in total (not including wild harvest), while the potential is in the megaton range. Standardization of equipment and automation can be one way to upscale production. Here we present results from a design study of a module-based solution for industrial cultivation, with specific solutions for spinning of thin seedling strings onto longlines, and a robotic module for interaction with the submerged farm at deployment and harvest. A reduced-scale physical prototype of the farm concept with the robot has been built for testing of deployment and harvesting techniques. The concept has been named SPOKe: Standardized Production of Kelp.publishedVersio

    Automation Concepts for Industrial-Scale Production of Seaweed

    Get PDF
    In order to industrialize macroalgal cultivation in Norway, new automated methods and solutions for seeding, deployment and harvesting need to be developed. Today's solutions are time and resource demanding, still yielding volumes nationally in the range of 100–200 tons per year in total (not including wild harvest), while the potential is in the megaton range. Standardization of equipment and automation can be one way to upscale production. Here we present results from a design study of a module-based solution for industrial cultivation, with specific solutions for spinning of thin seedling strings onto longlines, and a robotic module for interaction with the submerged farm at deployment and harvest. A reduced-scale physical prototype of the farm concept with the robot has been built for testing of deployment and harvesting techniques. The concept has been named SPOKe: Standardized Production of Kelp.publishedVersio

    Dynamic and volumetric variables reliably predict fluid responsiveness in a porcine model with pleural effusion

    Get PDF
    Background: The ability of stroke volume variation (SVV), pulse pressure variation (PPV) and global end-diastolic volume (GEDV) for prediction of fluid responsiveness in presence of pleural effusion is unknown. The aim of the present study was to challenge the ability of SVV, PPV and GEDV to predict fluid responsiveness in a porcine model with pleural effusions. Methods: Pigs were studied at baseline and after fluid loading with 8 ml kg−1 6% hydroxyethyl starch. After withdrawal of 8 ml kg−1 blood and induction of pleural effusion up to 50 ml kg−1 on either side, measurements at baseline and after fluid loading were repeated. Cardiac output, stroke volume, central venous pressure (CVP) and pulmonary occlusion pressure (PAOP) were obtained by pulmonary thermodilution, whereas GEDV was determined by transpulmonary thermodilution. SVV and PPV were monitored continuously by pulse contour analysis. Results: Pleural effusion was associated with significant changes in lung compliance, peak airway pressure and stroke volume in both responders and non-responders. At baseline, SVV, PPV and GEDV reliably predicted fluid responsiveness (area under the curve 0.85 (p<0.001), 0.88 (p<0.001), 0.77 (p = 0.007). After induction of pleural effusion the ability of SVV, PPV and GEDV to predict fluid responsiveness was well preserved and also PAOP was predictive. Threshold values for SVV and PPV increased in presence of pleural effusion. Conclusions: In this porcine model, bilateral pleural effusion did not affect the ability of SVV, PPV and GEDV to predict fluid responsiveness

    OC2017 A-200 - Potensialet for dyrking av makroalger i Trøndelag

    No full text
    Rapporten er en utredning om potensialet for storskala dyrking av makroalger i Trøndelag. Dyrking av makroalger både innenfor og utenfor grunnlinjen blir vurdert. De nye forskningsresultatene er basert på simuleringer med en koblet fysisk-biologisk havmodell og på dybdeintervjuer med representanter fra makroalgenæringen i Trøndelag. Hovedresultatene og -konklusjonene blir gjennomgått i et utvidet sam­mendrag. Resultatene vil kunne være nyttige i arbeid med areal - og forvaltningsplaner og for marin næ­ringsutvikling i Trøndelag. De vil også være relevante og interessante for eksisterende og fremtidige aktører innen makroalgenæringen

    Dispersal and Deposition of Detritus From Kelp Cultivation

    Get PDF
    A high resolution coastal and ocean hydrodynamic model system was used to investigate the transport and deposition patterns of Particulate Organic Matter (POM) from kelp farmed at three locations of different properties: a sheltered location, an exposed location, and an offshore location. Published values on the sinking speeds of organic particles from kelp were used, spanning several orders of magnitude. Recent work on quantifying the release of particulate organic matter from farmed kelp was used to link the release of carbon to possible cultivation volumes and scenarios, and finally to link this to the potential for carbon loading on the ocean floor. The results are presented in terms of loading and distribution per unit harvested kelp, and the loading estimates are compared with estimates of natural (background) primary production. According to the simulation results, organic matter may be transported anything from a few (hundred) meters up to a hundred km away from the release site, depending on the sinking rates, time of release, and the location. The depth at which the matter settles on the sea floor likewise depends on the properties of the matter and the sites. The time until settlement varied from minutes to several hundred hours. The results underscore the importance of constraining the dispersal and deposition of detritus from kelp cultivation in order to better understand and quantify associated environmental risks posed by organic loading, and the potential for seafloor carbon sequestration by kelp farming as a nature based climate solution.publishedVersio

    Dispersal and Deposition of Detritus From Kelp Cultivation

    No full text
    A high resolution coastal and ocean hydrodynamic model system was used to investigate the transport and deposition patterns of Particulate Organic Matter (POM) from kelp farmed at three locations of different properties: a sheltered location, an exposed location, and an offshore location. Published values on the sinking speeds of organic particles from kelp were used, spanning several orders of magnitude. Recent work on quantifying the release of particulate organic matter from farmed kelp was used to link the release of carbon to possible cultivation volumes and scenarios, and finally to link this to the potential for carbon loading on the ocean floor. The results are presented in terms of loading and distribution per unit harvested kelp, and the loading estimates are compared with estimates of natural (background) primary production. According to the simulation results, organic matter may be transported anything from a few (hundred) meters up to a hundred km away from the release site, depending on the sinking rates, time of release, and the location. The depth at which the matter settles on the sea floor likewise depends on the properties of the matter and the sites. The time until settlement varied from minutes to several hundred hours. The results underscore the importance of constraining the dispersal and deposition of detritus from kelp cultivation in order to better understand and quantify associated environmental risks posed by organic loading, and the potential for seafloor carbon sequestration by kelp farming as a nature based climate solution
    • …
    corecore