5 research outputs found

    Oxygen gradients affect behaviour of caged Atlantic salmon Salmo salar

    Get PDF
    Dissolved oxygen (DO) conditions in marine aquaculture cages are heterogeneous and fluctuate rapidly. Here, by temporarily wrapping a tarpaulin around the top 0 to 6 m of a marine cage (~2000 m3), we manipulated DO to evaluate the behavioural response of Atlantic salmon Salmo salar to hypoxia. Videos were recorded before, during and after DO manipulation at 3 m depth while vertical profiles of temperature, salinity, DO and fish density were continuously measured. The trial was repeated 4 times over a 2 wk period. Temperature and salinity profiles varied little across treatment periods; however, DO saturation was reduced at all depths in all replicate trials during the tarpaulin treatment compared to the periods before or after. In 3 out of 4 trials, swim speeds were 1.5 to 2.7 times slower during the tarpaulin treatment than the before or after periods. Significant changes in vertical distribution of fish density and DO were observed between treatment periods in all replicate trials; salmon swam either above or below the most hypoxic depth layer (59 to 62% DO saturation). In a regression tree analysis, the relative influence of DO in determining fish distribution was 17%, while temperature (39%) and salinity (44%) explained the majority of variation. Our results demonstrate that salmon are capable of modifying their distribution and possibly activity levels in response to intermediate DO levels, but that DO is not a primary driver of behaviour at the saturation levels examined in this study

    Surface environment modification in Atlantic salmon sea-cages: effects on amoebic gill disease, salmon lice, growth and welfare

    Get PDF
    Surface environment modification is a potential parasite control strategy in Atlantic salmon sea-cage farming. For instance, a temporary low salinity surface layer in commercial-scale snorkel sea-cages has coincided with reduced amoebic gill disease (AGD) levels after an outbreak. We tested if a permanent freshwater (FW) surface layer in snorkel sea-cages would lower AGD and salmon lice levels of stock relative to snorkel cages with seawater (SW) only and standard production cages with no snorkels. Triplicate cages of each type with 2000 post-smolts were monitored in autumn to winter for 8 wk and sampled 4 times. Lower proportions of individuals with elevated AGD-related gill scores were registered in SW and FW snorkel cages compared to standard cages; however, these proportions did not differ between SW and FW snorkel cages. Individuals positive for AGD-causing Paramoeba perurans were reduced by 65% in FW snorkel relative to standard cages, but values were similar between SW snorkel cages and other types. While total lice burdens were reduced by 38% in SW snorkel compared to standard cages, they were unchanged between FW snorkel and other cage types. Fish welfare and growth were unaffected by cage type. Surface activity was detected in all cages; however, more surface jumps were recorded in standard than snorkel cages. Overall, fish in FW snorkel cages appeared to reside too little in freshwater to consistently reduce AGD levels and salmon lice compared to SW snorkel cages. Further work should test behavioural and environmental manipulations aimed at increasing freshwater or low salinity surface layer use
    corecore