207 research outputs found

    Slender False Brome (Brachypodium sylvaticum, Poaceae), an Invasive Grass New to Ontario, Canada

    Get PDF
    Brachypodium sylvaticum, Slender False Brome, an invasive Eurasian grass, is reported for the first time in Ontario and eastern Canada from Grey County, southern Ontario. The only previous Canadian record is from Vancouver Island, British Columbia. The species is widespread in the U.S. Pacific Northwest, where it is spreading aggressively throughout much of western Oregon. In the eastern U.S.A., known populations are few and localized, although the species will likely spread

    Executive summary of AAPM Report Task Group 113: Guidance for the physics aspects of clinical trials

    Full text link
    The charge of AAPM Task Group 113 is to provide guidance for the physics aspects of clinical trials to minimize variability in planning and dose delivery for external beam trials involving photons and electrons. Several studies have demonstrated the importance of protocol compliance on patient outcome. Minimizing variability for treatments at different centers improves the quality and efficiency of clinical trials. Attention is focused on areas where variability can be minimized through standardization of protocols and processes through all aspects of clinical trials. Recommendations are presented for clinical trial designers, physicists supporting clinical trials at their individual clinics, quality assurance centers, and manufacturers.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/146453/1/acm212384_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146453/2/acm212384.pd

    Pea aphid odorant-binding protein ApisOBP6 discriminates between aphid sex pheromone components, aphid alarm pheromone and a host plant volatile

    Get PDF
    Olfactory perception of pheromones in insects involves odorant-binding proteins (OBPs), relatively small proteins (ca.110-240 amino acid residues) that can bind reversibly to behaviourally active olfactory ligands. In this study, we investigated the binding in silico and in vitro of the aphid sex pheromone components (1R,4aS,7S,7aR)-nepetalactol and (4aS,7S,7aR)-nepetalactone and the aphid alarm pheromone (E)-β-farnesene by OBPs from the pea aphid, Acyrthosiphon pisum. Screening of protein models of ApisOBPs1-11 with the aphid sex pheromone components suggested that ApisOPB6 was a candidate. Fluorescence assays using ApisOBP6 suggested that ApisOBP6 was able to bind both sex pheromone components and discriminate from the aphid alarm pheromone and the generic plant compound (R/S)-linalool. Saturation transfer difference NMR experiments with ApisOBP6 yielded results consistent to those from the fluorescence experiments, with a clear interaction between ApisOBP6 and (4aS,7S,7aR)-nepetalactone. These results describe a novel interaction and potential function for ApisOBP6, point to pre-receptor odorant discrimination by OBPs, and provide a platform for investigating the function of other aphid olfactory proteins involved in aphid chemical ecology

    A Raf-independent Epidermal Growth Factor Receptor Autocrine Loop Is Necessary for Ras Transformation of Rat Intestinal Epithelial Cells

    Get PDF
    We recently have shown that activated Ras, but not Raf, causes transformation of intestinal (RIE-1, IEC-6) epithelial cells, whereas both activated Ras and Raf transform NIH 3T3 fibroblasts (Oldham, S. M., Clark, G. J., Gangarosa, L. M., Coffey, R. J., and Der, C. J. (1996) Proc. Natl. Acad. Sci. U. S. A. 93, 6924-6928). The observations that conditioned medium from Ras-, but not Raf-, transfected RIE-1 cells, as well as exogenous transforming growth factor alpha (TGFalpha), promoted morphological transformation of parental RIE-1 cells prompted us to identify epidermal growth factor (EGF) receptor (EGFR) ligands produced by Ras-transformed RIE-1 cells responsible for this autocrine effect. Since studies in fibroblasts have shown that v-Src is transforming, we also determined if v-Src could transform RIE-1 cells. H- or K-Ras-transformed cells secreted significant amounts of TGFalpha protein, and mRNA transcripts for TGFalpha, amphiregulin (AR), and heparin-binding EGF-like growth factor (HB-EGF) were induced. Like Ras, v-Src caused morphological and growth transformation of parental RIE-1 cells. However, TGFalpha protein was not secreted by RIE-1 cells stably expressing v-Src or activated Raf, and only minor increases in EGFR ligand mRNA expression were detected in these cells. A selective EGFR tyrosine kinase inhibitor PD153035 attenuated the Ras-, but not Src-, transformed phenotype. Taken together, these observations provide a mechanistic and biochemical basis for the ability of activated Ras, but not activated Raf, to cause transformation of RIE-1 cells. Finally, we suggest that an EGFR-dependent mechanism is necessary for Ras, but not Src, transformation of these intestinal epithelial cells

    An ALS-associated variant of the autophagy receptor SQSTM1/p62 reprograms binding selectivity toward the autophagy-related hATG8 proteins

    Get PDF
    Recognition of human autophagy-related 8 (hATG8) proteins by autophagy receptors represents a critical step within this cellular quality control system. Autophagy impairment is known to be a pathogenic mechanism in the motor neuron disorder amyotrophic lateral sclerosis (ALS). Overlapping but specific roles of hATG8 proteins belonging to the LC3 and GABARAP subfamilies are incompletely understood, and binding selectivity is typically overlooked. We previously showed that an ALS-associated variant of the SQSTM1/p62 (p62) autophagy receptor bearing an L341V mutation within its ATG8-interacting motif (AIM) impairs recognition of LC3B in vitro, yielding an autophagy-deficient phenotype. Improvements in understanding of hATG8 recognition by AIMs now distinguish LC3-interaction and GABARAP-interaction motifs and predict the effects of L341V substitution may extend beyond loss of function to biasing AIM binding preference. Through biophysical analyses, we confirm impaired binding of the L341V-AIM mutant to LC3A, LC3B, GABARAP, and GABARAPL1. In contrast, p62 AIM interactions with LC3C and GABARAPL2 are unaffected by this mutation. Isothermal titration calorimetry and NMR investigations provided insights into the entropy-driven GABARAPL2/p62 interaction and how the L341V mutation may be tolerated. Competition binding demonstrated reduced association of the L341V-AIM with one hATG8 manifests as a relative increase in association with alternate hATG8s, indicating effective reprogramming of hATG8 selectivity. These data highlight how a single AIM peptide might compete for binding with different hATG8s and suggest that the L341V-AIM mutation may be neomorphic, representative of a disease mechanism that likely extends into other human disorders

    Iridoid Sex Pheromone Biosynthesis in Aphids Mimics Iridoid?Producing Plants

    Get PDF
    Biosynthesis of (1R,4aS,7S,7aR)?nepetalactol (1) and (4aS,7S,7aR)?nepetalactone (2) in plants involves iridoid synthase (ISY), an atypical reductive cyclase that catalyses the reduction of 8?oxogeranial into the reactive enol of (S)?8?oxocitronellal, and cyclization of this enol intermediate, either non?enzymatically or by a nepetalactol?related short chain dehydrogenase enzyme (NEPS) that yields the nepetalactols. In this study, we investigated the biosynthesis in?vivo of 1 and 2 in the pea aphid, Acyrthosiphon pisum, using a library of isotopically?labelled monoterpenoids as molecular probes. Topical application of deuterium?labelled probes synthesized from geraniol and nerol resulted in production of 2H4?lactol 1 and 2H4?lactone 2. However, deuterium incorporation was not evident using labelled probes synthesized from (S)?citronellol. These results suggest that iridoid biosynthesis in animals, specifically aphids, may follow a broadly similar route to that characterised for plants

    Site-Selective Installation of Nϵ-Modified Sidechains into Peptide and Protein Scaffolds via Visible-Light-Mediated Desulfurative C–C Bond Formation

    Get PDF
    Post-translational modifications (PTMs) enhance the repertoire of protein function and mediate or influence the activity of many cellular processes. The preparation of site-specifically and homogeneously modified proteins, to apply as tools to understand the biological role of PTMs, is a challenging task. Herein, we describe a visible-light-mediated desulfurative C(sp3)–C(sp3) bond forming reaction that enables the site-selective installation of Nϵ-modified sidechains into peptides and proteins of interest. Rapid, operationally simple, and tolerant to ambient atmosphere, we demonstrate the installation of a range of lysine (Lys) PTMs into model peptide systems and showcase the potential of this technology by site-selectively installing an NϵAc sidechain into recombinantly expressed ubiquitin (Ub)
    • …
    corecore