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ARTICLE INFO ABSTRACT

Keywords: Olfactory perception of pheromones in insects involves odorant-binding proteins (OBPs), relatively small pro-
Insect olfaction teins (ca.110-240 amino acid residues) that can bind reversibly to behaviourally active olfactory ligands. In this
Pheromones ) study, we investigated the binding in silico and in vitro of the aphid sex pheromone components (1R,4aS,7S,7aR)-
gs}(::g:t'blndlng protein nepetalactol and (4aS,7S,7aR)-nepetalactone and the aphid alarm pheromone (E)-p-farnesene by OBPs from the

pea aphid, Acyrthosiphon pisum. Screening of protein models of ApisOBPs1-11 with the aphid sex pheromone
components suggested that ApisOPB6 was a candidate. Fluorescence assays using ApisOBP6 suggested that
ApisOBP6 was able to bind both sex pheromone components and discriminate from the aphid alarm pheromone
and the generic plant compound (R/S)-linalool. Saturation transfer difference NMR experiments with ApisOBP6
yielded results consistent to those from the fluorescence experiments, with a clear interaction between ApisOBP6
and (4aS,7S,7aR)-nepetalactone. These results describe a novel interaction and potential function for ApisOBP6,
point to pre-receptor odorant discrimination by OBPs, and provide a platform for investigating the function of

Protein NMR
Molecular docking

other aphid olfactory proteins involved in aphid chemical ecology.

1. Introduction

Aphids (Homoptera: Aphididae) are economically important pests of
horticultural and agricultural crops worldwide, causing damage both
directly and indirectly through their feeding behaviour and transmission
of detrimental plant viruses, such as barley yellow dwarf virus (BYDV)
(Harris and Maramorosch, 1977; Pickett et al., 2013). Pheromones and
other semiochemicals are naturally-occurring behaviour-modifying
chemical signals that play a critical role in the life cycle of aphids
(Pickett et al., 2013). Sex pheromones for aphid pest species principally
comprise (1R,4aS,7S,7aR)-nepetalactol 1 and (4aS,7S,7aR)-nepeta-
lactone 2, whilst the main component of the aphid alarm pheromone for
many pest aphids is (E)-p-farnesene 5, and (R/S)-linalool 6 is utilised as
host plant volatile cue (Fig. 1) (Dawson et al., 1987; Marsh, 1972;
Pickett and Griffiths, 1980).

A number of studies have shown that olfactory perception of semi-
ochemicals in insects involves at least two distinct groups of protein, i.e.

olfactory receptors (ORs), seven transmembrane receptors with an in-
verse topology to the G-coupled protein receptors (GPCRs) found in
mammals (Benton, 2006; Buck and Axel, 1991; Butterwick et al., 2018;
del Marmol et al., 2021), and odorant-binding proteins (OBPs), rela-
tively small proteins (ca. 110-240 amino acid residues) found in high
concentrations (ca. 10 mM) in the sensillum lymph of antennae (Pelosi
and Maida, 1995; Vogt and Riffiford, 1981; Zhou et al., 2010). Insect
OBPs can be categorised into three distinct categories including classic
OBPs (possessing 6 highly conserved cysteine residues), Plus-C OBPs
(possessing 8 conserved cysteine residues and one conserved proline)
and Atypical OBPs (possessing 9 or 10 conserved cysteine residues)
(Zhou et al., 2010). Evidence of a role for OBPs in insect olfaction has
been provided by deletion of OBPs in the striped rice stem borer, Chilo
suppressalis, the tobacco cutworm, Spodoptera litura, and the common
fruit fly, Drosophila melanogaster, resulting in significant reduction in
antennal electrophysiological responses, measured by observing olfac-
tory receptor neuron (ORN) responses to their respective binding ligands
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(Chang et al., 2015, p. 201; Dong et al., 2017; Larter et al., 2016; Zhu
et al., 2016). For the pea aphid, Acyrthosiphon pisum, olfactory proteins
ApisOBP3, ApisOBP7 and ApisOR5 have previously been shown to be
critical for perception of the aphid alarm pheromone 5 (Northey et al.,
2016; Qiao et al., 2009; Zhang et al., 2017). Concurrent to these studies,
in this work we tested the hypothesis that A. pisum OBPs play a critical
role in discrimination between sex pheromone components 1 and 2,
alarm pheromone 5 and host plant volatile cue 6, using in silico
modelling methods, fluorescence binding assays, STD-NMR experiments
and biphasic gas chromatography assays. We also investigated the po-
tential of aphid OBPs to discriminate between 1 and 2 and their non
naturally-occurring stereoisomers 3 and 4.

2. Materials and methods
2.1. Homology models

For ApisOBP1-11, protein structures were initially predicted using
the iTASSER database, which takes a hierarchical approach by identi-
fying structural templates from the Protein Data Bank. All predicted
protein structures were minimised using the Yasara minimisation server.
All homology models were visualised in PyMol 2.3.4.

2.2. Molecular docking

Ligands were prepared in Chem3D 16.0 and AutoDock 4.2. Docking
studies were performed using AutoDock4.2 with the Racoon Virtual
screening tool using a Lamarckian genetic algorithm. Binding energies
and predicted K; values were calculated through the virtual screening
tool.

2.3. Production of OBPs

ApisOBP6 and ApisOBP9 were expressed in E. coli. A hexa-histidine
tag and ampicillin resistance gene were included. Bl21 (DE3) compe-
tent E. coli were transformed with the plasmids of interest. Trans-
formation was confirmed with colony selection, PCR and induction tests.
Recombinant BL21 (DE3) E. coli was grown in LB media and expression
induced with ITPG (Flurochem). Cell pellets were lysed by sonication in
TBS and 0.2% Triton X-100 in TBS. After centrifugation, protein was
initially denatured with 8 M urea and 100 mM DTT, then refolded via
rapid dilution overnight with 0.5:5 mM GSSG:GSG. The final mixture
was purified using a HiTrap nickel-affinity column (GE Healthcare) and
elution with 500 mM imidazole. The His-Tag was removed via overnight
cleavage with enterokinase (New England Biolabs) in 2 mM CaCly in TBS
and ApisOBP6/0BP9 further purified using a nickel-affinity column and
fast-protein liquid chromatography (Akta) with a Superdex S200 column
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in TBS. The final protein was concentrated and buffer-exchange into 25
mM Tris using VivaSpin 20.

2.4. Synthetic chemistry

Synthetic chemistry methods and analysis can be found in Appendix
B.

2.5. Fluorescence measurements

All fluorescent measurements were undertaken using a PerkinElmer
LS50B fluorescence spectrophotometer, using a 2 mL quartz cuvette,
unless otherwise stated. Spectra were recorded using FL WinLab soft-
ware. Saturation of OBPs with fluorescent probe, 1-NPN (Sigma-Aldrich)
was initially measured by titrating a 2 pM protein sample (2 mL in 25
mM Tris-HCI) with aliquots of 1 mM ligand in methanol to final con-
centrations of 1-16 pM. The fluorescence intensity was recorded. Ti-
trations were performed with aliquots of 1 mM ligand in methanol to
final concentrations of 1-20 pM, either after the addition of fluorescent
probe to a final concentration of 1 pM or in the absence of fluorescent
probe. To generate Kp, values, relative fluorescence intensity was plotted
against the concentration of ligand as a binding curve. Kp values were
generated in GraphPad Prism 7 using a non-linear regression.

2.6. STD-NMR

Samples were run using an AVANCE Bruker DRX-500 MHz Nuclear
Magnetic Resonance spectrometer equipped with a 5 mm BBO BB-1H
probe and set at 500 MHz for 'H spectra. Analysis of Bruker data was
performed using Topspin 4.0.7.

STD-NMR samples comprised of ApisOBP6 (30 pM in D,0) and
ligand (3 mM in de-DMSO). The ApisOBP6 on-resonance frequency of
160 Hz was selected to ensure no accidental excitation of ligand signals.
A 3 s saturation time and 5.12 s relaxation delay were used. For each
run, 192 scans were performed. Off-resonance spectra were recorded
with an excitation frequency of —12,000 Hz. STD absolute values were
calculated by observing the change in proportions between the off-
resonance spectrum and the final STD spectrum using the equation (Io-
Istp)/Ip in which the term (Ip - Istp) represents the ratio of peak intensity
in the STD spectrum and Iy the ratio of intensity in the off resonance
spectrum. A second value representing the proportionate change was
calculated using the equation I -(Iy- Istp).

2.7. Biphasic binding assay

High resolution gas chromatography-flame ionization detector (GC-
FID) analysis was performed using an Agilent 6890A GC instrument
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Fig. 1. Aphid sex pheromone components, (1R,4aS,7S,7aR)-nepetalactol 1 and (4aS,7S,7aR)-nepetalactone 2, non-natural enantiomers of the sex pheromone
components (1S,4aR,7R,7aS)-nepetalactol 3 and (4aR,7R,7aS)-nepetalactone 4, the aphid alarm pheromone (E)-B-farnesene 5 and the generic host plant volatile (R/

S)-linalool 6.
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equipped with a split/splitless injector and HP-1 column (320.00 pm
diameter x 50 m length). The carrier gas was hydrogen (flow rate of 3.1
mL min~?) and the GC oven temperature programmed to start at 30 °C,
rise to 100 °C at a rate of 5 °C min’l, maintained at 100 °C for 10 min,
then rise again to 250 °C at a rate of 10 °C min™" after which it was
maintained at 250 °C for 45 min. The final run time was 84.10 min.
For the biphasic assay, a solution of test ApisOBP (100 pL of 5 pM in
25 mM Tris) was added to a glass vial (2 mL size). A ligand solution (80
pL of 12 uM solution in hexane) was carefully added on top, to create a
biphasic system. The vial was gently mixed before being centrifuged
(5,000 rpm, 15 min). Finally, samples were incubated (ambient tem-
perature, 2h) and a sample (2 pL) of the hexane layer was removed and
analysed by GC-FID. Quantification of the amount of ligand per sample
was undertaken by generating a calibration curve for each ligand across
a range of concentrations (Supplemental Data Fig. S2). The amount of
ligand present was reported in milligram and micromolar quantities.

2.8. Statistical analysis

Statistical analysis was performed in R 3.4.4. For fluorescence data, a
one-way weighted analysis of variance (ANOVA) was performed be-
tween ligands for each protein, and a two-way weighted ANOVA was
performed to investigate the interactions between proteins and ligands.
For gas chromatography, a two-way ANOVA was performed. In both
analyses, a Tukey Test was used for post-hoc analysis.

3. Results and discussion
3.1. Insilico predictions

Initially, in silico modelling was adopted to identify potential
discriminatory binding interactions between A. pisum OBPs and com-
pounds 1-6. Three-dimensional protein models of ApisOBPs 1-11 were
generated using iTASSER, minimised using the Yasara minimisation
server and visualised in PyMol (Fig. 2) (Krieger et al., 2009; Pandit et al.,
2006; Schrodinger, 2015). The generated homology models were
screened using AutoDock 4.2 for their predicted interaction with 1-6
(Fig. 3) (Forli et al., 2016; Morris et al., 1998).

Significantly stronger binding of ApisOBP6 with sex pheromone
components 1 and 2 was predicted compared to the alarm pheromone 5
and the plant volatile cue 6. Other ApisOBPs were predicted to have
relatively weaker binding affinities for 1, 2, 5 and 6, with ApisOBP9
displaying the lowest predicted energy interactions. This was also re-
flected in the calculated K; values, with the lowest K; for the sex pher-
omone component 1 being 2.3 pM and the K; for 5 being predicted at a
higher 11.5 pM. Non-naturally occurring stereosiomers 3 and 4 were
predicted to bind with similar energy as sex pheromone components 1
and 2. From these predictions, ApisOBP6 was selected as a candidate for
in vitro experiments to confirm predicted discrimation ability, and Api-
sOBP9 was selected as a control protein, due to predicted low-affinity
binding activity.

3.2. Fluorescence assays

Recombinant ApisOBP6 and ApisOBP9 were prepared via cloning of
the required genes, transformation of pET45b E. coli expression system
and affinity purification followed by subsequent cleavage of Hisg tag.
Authentic samples of 1-6 were obtained with the aim of studying the in
vitro binding activity of ApisOBP6 and ApisOBP9 compared to predicted
binding in the in silico modelling. Sex pheromone component 2 was
purified from Nepeta cataria essential oil by flash column chromatog-
raphy, whilst 1 was synthesised from 2 by stereoselective sodium
borohydride reduction (Appendix B) (Birkett and Pickett, 2003).
Non-naturally occurring steroisomer 3 was synthesised via a multi-step
synthesis starting from commercially avaliable (R)-citronellol 7 (Daw-
son et al., 1996; Schreiber et al., 1986). Allylic oxidation with catalytic
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Fig. 2. Homology model of Acyrthosiphon pisum odorant-binding protein 1-11
(ApisOBP1-11) generated with iTASSER and PyMol.
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Fig. 3. Predicted in silico binding interactions (shown as 1/K;) of key aphid
semiochemicals 1-6 with ApisOBP1-11.

selenium dioxide followed by Swern oxidation yielded dialdehyde 8.
Cyclisation of dialdehyde 8 proceeded via an intramolecular
enamine-mediated [4 + 2] cycloadition to yield cyclised product 9.
Hydrolysis of 9 yielded non-naturally ocurring steroisomer 3 that was
converted to 4 via Fétizon oxidation (Appendix B). Alarm pheromone 5
was prepared by the regioselective 1,4-elimination of the allylic ether
THP-(E, E)-farnesol as previously reported (Kang et al., 1987), while
(R/S)-linalool 6 was commercially available (Sigma Aldrich).

In vitro fluorescence binding studies with ApisOBP6 were conducted
through monitoring displacement of a fluorescent probe N-phenyl-1-
naphthylamine (1-NPN) by 1-6 (Qiao et al., 2009). The sex pheromone
components 1 and 2 and stereoisomers 3 and 4 yielded binding data to
ApisOBP6 consistent with the predicted values from the in silico
modelling, indicating that the protein models have a high degree of
accuracy. A significant difference in binding was observed when
comparing 1-4 with the alarm pheromone 5 and the plant volatile cue 6
(Fig. 4a). The interaction between ApisOBP6 and sex pheromone
component 2 provided the lowest K value with 1.3 & 0.6 pM. There was
no statisitcal difference between binding constants of the naturally
occurring sex pheromone components 1 and 2 and thier corresponding
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stereoisomers 3 and 4. However, there was a potential difference be-
tween 2 and 4 (p = 0.11), althought this was not statistically significant.
There was no statistical difference in measured binding constants be-
tween aphid semiochemicals 1-5 and ApisOBP9 (Fig. 4b). This apparent
stereoselectivity trend of ApisOBP6 is consistent with previously re-
ported literature of other insect OBPs. In the gypsy moth, Lymantria
dispar, LdisOBP1 was shown to preferentially bind (—)-disparlure while
LdisOBP2 preferentially bound (+)-disparlure (Plettner et al., 2000).
Futhermore, Plettner et al. demonstrated that ApolOBP3, from Anther-
aea polyohemus, exhibited a lower binding affinity towards (+)-dis-
parlure compared to (—)-disparlure. Contrastingly however, OBPs from
the Japanese beetle, Popillia japnica, and the Osaka beetle, Anomala
osakana, are incapable of discriminating between the stereoisomers of
japonilure, even though both beetles behaviourally discriminate the
respective japonilure enantiomers (Wojtasek et al., 1998). Given these
previously reported observations, in combination with our results
detailed here, they suggest that the molecular mechanism of insect
semiochemical enantiodiscrimination is still not fully understood and
potentially involves other olfactory proteins, such as odorant receptors,
to fully account for the discrimination observed.

3.3. STD-NMR

STD-NMR experiments were performed to further explore in vitro
binding between ApisOBP6 and 2 and 5, selected as the strongest binder
and non-binder to ApisOBP6 respectively (Fig. 5) (Mayer and Meyer,
1999; Xia et al., 2010). For sex pheromone component 2, strong positive
STD-spectra were observed for resonances 1.21, 1.50-1.59, 1.64,
1.89-1.98, 2.02-2.11, 2.31-2.39 and 2.05 ppm while resonance
6.18-6.20 ppm had a negative difference. For 5, only weak positive
difference spectra were observed for resonances 1.48, 1.52 and 4.95
ppm. STD-NMR experiments clearly demonstrated an interaction be-
tween ApisOBP6 and 2 while only non-specific interactions were
observed betweenApisOBP6 and 5. Epitope mapping of the attenuation
of individual resonances in 2 revealed the greatest attenuation for the
two methyl substituents, with all the cyclopentyl protons also demon-
strating different degrees of attenuation (Fig. 5). Epitope mapping of the
attenuation of individual protons of 2 was consistent with a binding
conformation predicted from the in silico modelling (Fig. 6) (Mayer and
Meyer, 2001). Greatest attentuation of the two methyl substitents of 2
was consistent with predicted binding conformation given these sub-
stituents point directly at the protein surface, while the cyclopentyl
protons also experience attenuation being located deep within the
binding pocket. Proton 6.18-6.20 ppm of 2 showed minimal attenuation
in the STD-NMR, consistent with the predicted binding orientation
positioning this proton directly towards the binding pocket opening and
therefore having minimal interactions with the protein. This low
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Fig. 4. Binding constants between (a) ApisOBP6 and (b) ApisOBP9 and aphid semiochemicals (4aS,7S,7aR)-nepetalactone 2, (4aR,7R,7aS)-nepetalactone 4,
(1R,4aS,7S,7aR)-nepetalactol 1, (1S,4aR,7R,7aS)-nepetalactol 3, (E)-B-farnesene 5 and (R/S)-linalool 6 calculated from fluorescence data. * = p < 0.05; ** = p <

0.01; *** = p < 0.001; ns = no significance.
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Fig. 5. 2 showing the predicted epitope mapping (blue) when bound to ApisOBP6 and 5 showing the predicted non-specific interactions (blue) when interacting with

ApisOBP6. Raw values found in Supplementary Data (Table S2; Fig. S1).

o0 £ 5

Fig. 6. (4aS,7S,7aR)-Nepetalactone 1 (white, with oxygens in red) in the predicted binding pocket of ApisOBP6 (blue/purple).

attenuation could also be explained by solvent molecules blocking the
interactions with the protein as previously described and was again
consistent with proton-2 being located at the binding pocket opening
(Brecker et al., 2006; Mayer and Meyer, 2001; Puchner et al., 2015).
STD-NMR demonstrates which protons are involved in the binding
interaction by measuring distance dependence saturation-transfer. STD-
NMR spectra demonstrated a clear interaction between ApisOBP6 and 2,
and a lack of specific interaction between ApisOBP6 and the alarm
pheromone 5. The lack of a difference spectra for 5, indicating a lack of
binding suggesting that ApisOBP6 can discriminates the sex pheromone
component from other important aphid semiochemicals. Proton reso-
nances for almost all protons of 2 remained in the final STD-NMR
spectrum, suggesting that a saturation transfer between the protein
and ligand had occurred. Conversely, the STD-NMR spectrum for Api-
sOBP6 and 5 showed only a few remaining peaks, which can be
explained by non-specific interactions of the protruding methyl groups.

An unusual result was observed with the alkene proton at the C-2 po-
sition, in which a negative STD-NMR spectrum was recorded. This
negative difference peak has been observed in other STD-NMR experi-
ments and was previously explained as due to a solvent molecule
interfering with the saturation of the ligand during spin and lock time
(Mayer and Meyer, 2001; Puchner et al., 2015). From our in silico
modelling data, proton 2-H of 2 is protruding out of the predicted pocket
into the aqueoues external environment and is therefore accessible to
solvent interferance (Fig. 6). In previous literature, this effect has been
observed with lactose ring structure, similar to the lactone structure seen
here (Brecker et al., 2006).

3.4. Biphasic binding assay

Biphasic gas chromatography assays were carried out with Api-
sOBP6, ApisOBP9 and compounds 1, 2 and 5 presented in aqueous/
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Fig. 7. (a) The percentage change in amount of ligand in the biphasic assay as monitored by gas chromatography of ApisOBP6 and ApisOBP9 compared to a control
(Tris); (b) The amount of ligand (pmol) removed from the layer per protein (pmol). For statistical analysis, * = p < 0.05; ** = p < 0.01; *** = p < 0.001; ns = no

significance.
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hexane phases respectively as a mimic of the natural biphasic system
found in vivo (Fig. 7) (Zhou et al., 2009). Significant differences in the
amount of compound removed from the hexane layer, and the amount
removed relative to the amount of protein present, were observed when
hexane layers were combined with aqueous layers containing ApisOBP6,
ApisOBP9 or no protein. The presence of ApisOBP6 in the aqueous layer
resulted in a significantly greater removal of 1 and 2, but not 5, from the
hexane layer compared to the presence of ApisOBP9 or no protein at all.
Furthermore, the ratio of ligand (pmol per pmol protein) removed from
the hexane layer was significantly higher when ApisOBP6 was present in
the aqueous layer compared to when ApisOBP9 was present.

No clear differences between the control samples and the sample
containing ApisOBP9 were observed. However, with ApisOBP6, the
amount of 1 and 2 in the hexane layer reduced to a significantly lower
level than in the control or ApisOBP9. Furthermore, the ratio of molar
quantities of 1 and 2 taken up per mole of OBP was significantly higher
in ApisOBP6 than with ApisOBP9.

4. Conclusion

Due to the high levels of background noise experienced by the insect
olfactory system in the wild and the high level of specificity required,
insect olfactory proteins must be sophisticated in their ability to
recognise and discriminate between molecules in comparison to other
recognition proteins (Touchet et al., 2015). Recently, OBPs and ORs
from A. pisum, ie. ApisOBP3, ApisOBP7 and ApisOR5, were shown to be
critical for perception of the aphid alarm pheromone, (E)-B-farnesene 5
(Northey et al., 2016; Wang et al., 2021; Zhang et al., 2017). Our results
show that not only can ApisOBP6 bind the aphid sex pheromone com-
ponents 1 and 2 and their respective non naturally-occurring stereo-
isomers 3 and 4, but ApisOBP6 can also discriminate from the aphid
alarm pheromone 5 and the generic host plant volatile (R/S)-linalool 6.
Furthermore, we observed a possible trend that ApisOBP6 has minor
stereoselectivity towards the naturally occurring stereoisomers over the
biologically inactive non-natural stereoisomer, although this was not
statistically significant. To our knowledge this is the first report of an
interaction between an aphid OBP and aphid sex pheromone component
and discrimation between different aphid semiochemicals at the olfac-
tory level. ApisOBP®6 is one of only two Plus-C OBPs found in aphids and
is responsible for the second most abundant OBP mRNA in aphid
antennae (De Biasio et al., 2014). It is also a large OBP at 215 residues; it
has been suggested that larger OBPs may have a longer C-terminal re-
gion, which can contribute to a conformational change by folding into
the binding pocket when a ligand is bound (Gomez-Diaz et al., 2013;
Pesenti et al., 2008; Zhang et al., 2017).

In addition to exploring the ability of aphid OBPs to discriminate
between multiple different semiochemicals, we also explored their
ability to discriminate between stereoisomers. The enantiomers of the
sex pheromone components 3 and 4 were tested in silico and in vitro with
fluorescence binding assays. There was no significant difference be-
tween the sex pheromone components 2 and its enantiomers 4 interac-
tion with ApisOBP6. This apparent slight ability of ApisOBP6 to
distinguish between enantiomers of the sex pheromone components
suggests that another olfactory protein, most likely an OR, is responsible
for enantiomeric discrimination. Although it is difficult to elucidate the
role of ApisOBPs from these initial results, the slight differences
observed should be investigated further. If true enantiomeric differences
are seen, this would be one of the first observation of OBPs playing a
discriminating role at this level (Sun et al., 2012). Future work should
focus on the deorphanisation of ORs in A. pisum to find a potential
corresponding sex pheromone OR that may interact with ApisOBP6.

After the success of the fluorescence binding studies between Api-
sOBP6 and the sex pheromone components 1 and 2, STD-NMR experi-
ments and biphasic binding assays were explored to delve deeper into
the specifics of the ApisOBP6 and aphid pheromone interactions. The
biphasic assay was uniquely designed to provide a more realistic method
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for investigating OBP binding activities, specifically investigating
polyphasic systems present in the sensory organs. Solubilising ligands,
typically hydrophobic in nature, from the air via the cuticular wax
coated antennal pore into an aqueous solution (the sensillum lymph) is
one of the main roles hypothesized for OBPs (Pelosi et al., 2006).
Overall, these results indicate ApisOBP6 increases the amount of 1 and 2
that can be solubilised into the aqueous layer than with a control or
ApisOBP9. This result is consistent with the other ligand binding assays
with ApisOBP6, and further supports the role of ApisOBP6 in binding sex
pheromone components 1 and 2.

In summary, our data shows that ApisOBP6, an OBP from the pea
aphid, A. pisum, can discriminate between aphid sex pheromone com-
ponents 1 and 2, the aphid alarm pheromone 5 and the generic host
plant volatile cue 6. We also observed a slight trend, although not sta-
tistically significant, in stereoselectivity between biologically active
natural stereoisomers and the non-naturally occurring bioligcally inac-
tive stereoisomer that suggests the role of another component of the
olfactory system, potentially an OR. Our results suggest that ApisOBP6
may play a role in the perception of the aphid sex pheromone and a
possible role in pre-receptor odorant filtering. The work also demon-
strates successful prediction of pheromone-OBP interactions generated
from in silico modelling and indicates a new NMR-based method for
exploring olfactory protein-ligand interactions. Both these approaches
may be deployed in the study of the function of other insect olfactory
proteins. Further work including X-ray crystallography, RNAi-based
silencing or CRISPR/Cas9 is required to confirm ApisOBP6 function in
vivo and the potential role of an OR in enantiomeric discrimination of
chiral aphid sex pheromone components.
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