3,853 research outputs found

    Rifts in Spreading Wax Layers

    Full text link
    We report experimental results on the rift formation between two freezing wax plates. The plates were pulled apart with constant velocity, while floating on the melt, in a way akin to the tectonic plates of the earth's crust. At slow spreading rates, a rift, initially perpendicular to the spreading direction, was found to be stable, while above a critical spreading rate a "spiky" rift with fracture zones almost parallel to the spreading direction developed. At yet higher spreading rates a second transition from the spiky rift to a zig-zag pattern occurred. In this regime the rift can be characterized by a single angle which was found to be dependent on the spreading rate. We show that the oblique spreading angles agree with a simple geometrical model. The coarsening of the zig-zag pattern over time and the three-dimensional structure of the solidified crust are also discussed.Comment: 4 pages, Postscript fil

    Scaling of anisotropic flow in the picture of quark coalescence

    Full text link
    Measurements of anisotropic flow at low (p_T < 1.5 GeV/c) and intermediate (1.5 < p_T < 5 GeV/c) transverse momentum from the STAR collaboration are reviewed. While at low p_T an ordering of elliptic flow strength with particle mass is observed, the measured signals appear to follow number-of-constituent quark scaling at intermediate p_T. The observations of higher harmonics support this picture qualitatively, and are sensitive to specific model assumptions.Comment: 7 pages, 5 figures; Hot Quarks 2004 conference proceedings, to appear in J. Phys. G; revised version (small changes in wording

    Impacts of magnetic permeability on electromagnetic data collected in settings with steel-cased wells

    Full text link
    Electromagnetic methods are increasingly being applied in settings with steel infrastructure. These include applications such as monitoring of CO2 sequestration or even assessing the integrity of a wellbore. In this paper, we examine the impacts of the magnetic permeability of a steel-cased well on electromagnetic responses in grounded source experiments. We consider a vertical wellbore and simulate time and frequency domain data on 3D cylindrical meshes. Permeability slows the decay of surface electric fields in the time domain and contributes to a phase shift in the frequency domain. We develop our understanding of how permeability alters currents within, and external to, the casing by focussing first on the time domain response and translating insights to the frequency domain. Following others, we rewrite Maxwell's equations to separate the response into terms that describe the magnetization and induction effects. Magnetic permeability impacts the responses in two ways: (1) it enhances the inductive component of the response in the casing, and (2) it creates a magnetization current on the outer wall of the casing. The interaction of these two effects results in a poloidal current system within the casing. It also generates anomalous currents external to the casing that can alter the geometry and magnitude of currents in the surrounding geologic formation. This has the potential to be advantageous for enhancing responses in monitoring applications

    A multiple-method approach reveals a declining amount of chloroplast DNA during development in Arabidopsis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A decline in chloroplast DNA (cpDNA) during leaf maturity has been reported previously for eight plant species, including <it>Arabidopsis thaliana</it>. Recent studies, however, concluded that the amount of cpDNA during leaf development in Arabidopsis remained constant.</p> <p>Results</p> <p>To evaluate alternative hypotheses for these two contradictory observations, we examined cpDNA in Arabidopsis shoot tissues at different times during development using several methods: staining leaf sections as well as individual isolated chloroplasts with 4',6-diamidino-2-phenylindole (DAPI), real-time quantitative PCR with DNA prepared from total tissue as well as from isolated chloroplasts, fluorescence microscopy of ethidium-stained DNA molecules prepared in gel from isolated plastids, and blot-hybridization of restriction-digested total tissue DNA. We observed a developmental decline of about two- to three-fold in mean DNA per chloroplast and two- to five-fold in the fraction of cellular DNA represented by chloroplast DNA.</p> <p>Conclusion</p> <p>Since the two- to five-fold reduction in cpDNA content could not be attributed to an artifact of chloroplast isolation, we conclude that DNA within Arabidopsis chloroplasts is degraded <it>in vivo </it>as leaves mature.</p
    • …
    corecore