7 research outputs found

    Impact of motion compensation and partial volume correction for ¹⁸F-NaF PET/CT imaging of coronary plaque

    Get PDF
    Recent studies have suggested that ¹⁸F-NaF-PET enables visualization and quantification of plaque micro-calcification in the coronary tree. However, PET imaging of plaque calcification in the coronary arteries is challenging because of the respiratory and cardiac motion as well as partial volume effects. The objective of this work is to implement an image reconstruction framework, which incorporates compensation for respiratory as well as cardiac motion (MoCo) and partial volume correction (PVC), for cardiac ¹⁸F-NaF PET imaging in PET/CT. We evaluated the effect of MoCo and PVC on the quantification of vulnerable plaques in the coronary arteries. Realistic simulations (Biograph TPTV, Biograph mCT) and phantom acquisitions (Biograph mCT) were used for these evaluations. Different uptake values in the calcified plaques were evaluated in the simulations, while three "plaque-type" lesions of 36, 31 and 18 mm³ were included in the phantom experiments. After validation, the MoCo and PVC methods were applied in four pilot NaF-PET patient studies. In all cases, the MoCo-based image reconstruction was performed using the STIR software. The PVC was obtained from a local projection (LP) method, previously evaluated in preclinical and clinical PET. The results obtained show a significant increase of the measured lesion-to-background ratios (LBR) in the MoCo+PVC images. These ratios were further enhanced when using directly the tissue-activities from the LP method, making this approach more suitable for the quantitative evaluation of coronary plaques. When using the LP method on the MoCo images, LBR increased between 200% and 1119% in the simulated data, between 212% and 614% in the phantom experiments and between 46% and 373% in the plaques with positive uptake observed in the pilot patients. In conclusion, we have built and validated a STIR framework incorporating MoCo and PVC for ¹⁸NaF PET imaging of coronary plaques. First results indicate an improved quantification of plaque-type lesions

    Increased tryptophan, but not increased glucose metabolism, predict resistance of pembrolizumab in stage III/IV melanoma

    No full text
    ABSTRACTClinical trials of combined IDO/PD1 blockade in metastatic melanoma (MM) failed to show additional clinical benefit compared to PD1-alone inhibition. We reasoned that a tryptophan-metabolizing pathway other than the kynurenine one is essential. We immunohistochemically stained tissues along the nevus-to-MM progression pathway for tryptophan-metabolizing enzymes (TMEs; TPH1, TPH2, TDO2, IDO1) and the tryptophan transporter, LAT1. We assessed tryptophan and glucose metabolism by performing baseline C11-labeled α-methyl tryptophan (C11-AMT) and fluorodeoxyglucose (FDG) PET imaging of tumor lesions in a prospective clinical trial of pembrolizumab in MM (clinicaltrials.gov, NCT03089606). We found higher protein expression of all TMEs and LAT1 in melanoma cells than tumor-infiltrating lymphocytes (TILs) within MM tumors (n = 68). Melanoma cell-specific TPH1 and LAT1 expressions were significantly anti-correlated with TIL presence in MM. High melanoma cell-specific LAT1 and low IDO1 expression were associated with worse overall survival (OS) in MM. Exploratory optimal cutpoint survival analysis of pretreatment ‘high’ vs. ‘low’ C11-AMT SUVmax of the hottest tumor lesion per patient revealed that the ‘low’ C11-AMT SUVmax was associated with longer progression-free survival in our clinical trial (n = 26). We saw no such trends with pretreatment FDG PET SUVmax. Treatment of melanoma cell lines with telotristat, a TPH1 inhibitor, increased IDO expression and kynurenine production in addition to suppression of serotonin production. High melanoma tryptophan metabolism is a poor predictor of pembrolizumab response and an adverse prognostic factor. Serotoninergic but not kynurenine pathway activation may be significant. Melanoma cells outcompete adjacent TILs, eventually depriving the latter of an essential amino acid

    The Continuing Evolution of Molecular Functional Imaging in Clinical Oncology: The Road to Precision Medicine and Radiogenomics (Part I)

    No full text
    corecore