14 research outputs found

    Genome fractionation and loss of heterozygosity in hybrids and polyploids: Mechanisms, consequences for selection, and link to gene function

    Get PDF
    Hybridization and genome duplication have played crucial roles in the evolution of many animal and plant taxa. The subgenomes of parental species undergo considerable changes in hybrids and polyploids, which often selectively eliminate segments of one subgenome. However, the mechanisms underlying these changes are not well understood, particularly when the hybridization is linked with asexual reproduction that opens up unexpected evolutionary pathways. To elucidate this problem, we compared published cytogenetic and RNAseq data with exome sequences of asexual diploid and polyploid hybrids between three fish species; Cobitis elongatoides, C taenia, and C tanaitica. Clonal genomes remained generally static at chromosome-scale levels but their heterozygosity gradually deteriorated at the level of individual genes owing to allelic deletions and conversions. Interestingly, the impact of both processes varies among animals and genomic regions depending on ploidy level and the properties of affected genes. Namely, polyploids were more tolerant to deletions than diploid asexuals where conversions prevailed, and genomic restructuring events accumulated preferentially in genes characterized by high transcription levels and GC-content, strong purifying selection and specific functions like interacting with intracellular membranes. Although hybrids were phenotypically more similar to C taenia, we found that they preferentially retained C elongatoides alleles. This demonstrates that favored subgenome is not necessarily the transcriptionally dominant one. This study demonstrated that subgenomes in asexual hybrids and polyploids evolve under a complex interplay of selection and several molecular mechanisms whose efficiency depends on the organism's ploidy level, as well as functional properties and parental ancestry of the genomic region.Web of Science38125274525

    Šrotovací letmé nůžky

    No full text
    Import 20/04/2006Prezenční výpůjčkaVŠB - Technická univerzita Ostrava. Fakulta strojní. Katedra (340) výrobních strojů a konstruován

    Cytogenetic Characterization of Seven Novel satDNA Markers in Two Species of Spined Loaches (Cobitis) and Their Clonal Hybrids

    No full text
    Interspecific hybridization is a powerful evolutionary force. However, the investigation of hybrids requires the application of methodologies that provide efficient and indubitable identification of both parental subgenomes in hybrid individuals. Repetitive DNA, and especially the satellite DNA sequences (satDNA), can rapidly diverge even between closely related species, hence providing a useful tool for cytogenetic investigations of hybrids. Recent progress in whole-genome sequencing (WGS) offers unprecedented possibilities for the development of new tools for species determination, including identification of species-specific satDNA markers. In this study, we focused on spined loaches (Cobitis, Teleostei), a group of fishes with frequent interspecific hybridization. Using the WGS of one species, C. elongatoides, we identified seven satDNA markers, which were mapped by fluorescence in situ hybridization on mitotic and lampbrush chromosomes of C. elongatoides, C. taenia and their triploid hybrids (C. elongatoides × 2C. taenia). Two of these markers were chromosome-specific in both species, one had centromeric localization in multiple chromosomes and four had variable patterns between tested species. Our study provided a novel set of cytogenetic markers for Cobitis species and demonstrated that NGS-based development of satDNA cytogenetic markers may provide a very efficient and easy tool for the investigation of hybrid genomes, cell ploidy, and karyotype evolution

    Evolution of the Parvalbumin Genes in Teleost Fishes after the Whole-Genome Duplication

    No full text
    Parvalbumin is considered a major fish allergen. Here, we report the molecular evolution of the parvalbumin genes in bony fishes based on 19 whole genomes and 70 transcriptomes. We found unexpectedly high parvalbumin diversity in teleosts; three main gene types (pvalb-α, pvalb-β1, and pvalb-β2, including oncomodulins) originated at the onset of vertebrates. Teleosts have further multiplied the parvalbumin gene repertoire up to nine ancestral copies—two copies of pvalb-α, two copies of pvalb-β1, and five copies of pvalb-β2. This gene diversity is a result of teleost-specific whole-genome duplication. Two conserved parvalbumin genomic clusters carry pvalb-β1 and β2 copies, whereas pvalb-α genes are located separately in different linkage groups. Further, we investigated parvalbumin gene expression in 17 tissues of the common carp (Cyprinus carpio), a species with 21 parvalbumin genes in its genome. Two pvalb-α and eight pvalb-β2 copies are highly expressed in the muscle, while two alternative pvalb-α copies show expression in the brain and the testes, and pvalb-β1 is dominant in the retina and the kidney. The recent pairs of muscular pvalb-β2 genes show differential expression in this species. We provide robust genomic evidence of the complex evolution of the parvalbumin genes in fishes

    Two Bonebridge bone conduction hearing implant generations: audiological benefit and quality of hearing in children

    Get PDF
    Purpose The study aimed to evaluate audiological benefits, quality of hearing and safety of two Bonebridge generation: BCI601 and BCI602 (MED-EL, Innsbruck, Austria) in children. Methods Twelve children were implanted: five BCI601 and seven BCI602 comprising of ten conductive hearing loss, and two single sided deaf SSD subjects. Audiological outcomes tested were sound field audiometry, functional gain, speech recognition threshold (SRT50), speech recognition in noise (SPRINT) and localisation abilities. Subjective measures were Speech, Spatial and Qualities of Hearing Scale (SSQ12). Results The mean FG with the BCI601 was 25.0 dB and with the BCI602 28.0 dB. The benefit in SRT50 was 23.2 dB and 33.8 dB, respectively. The mean benefit in SPRINT was 15% and 6.7% and the localisation ability improved from 33.3 degrees to 16 degrees and from 26.2 degrees to 17.6 degrees, respectively. The two SSD subjects reported a FG of 17 dB, a benefit in SRT50 of 22.5 and a benefit in SPRINT of 20%. Subjective outcomes improved significantly and even exceeded the values of their age-and sex matched normal hearing peers. One revision was reported: a retroauricular emphysema above the implant occurred 12 months post-OP, it was resolved operatively with the implant still being functional. Conclusion The pediatric cohort reports significant audiological benefit, even exceeding that of the age- and sex matched control. The combination of the high safety and audiological benefit makes the Bonebridge a comfortable and effective option in hearing rehabilitation in children.Web of Scienc

    Salmonella Paratyphi Infection: Use of Nanopore Sequencing as a Vivid Alternative for the Identification of Invading Bacteria

    No full text
    In our study we present an overview of the use of Oxford Nanopore Technologies (ONT) sequencing technology on the background of Enteric fever. Unlike traditional methods (e.g., qPCR, serological tests), the nanopore sequencing technology enables virtually real-time data generation and highly accurate pathogen identification and characterization. Blood cultures were obtained from a 48-year-old female patient suffering from a high fever, headache and diarrhea. Nevertheless, both the initial serological tests and stool culture appeared to be negative. Therefore, the bacterial isolate from blood culture was used for nanopore sequencing (ONT). This technique in combination with subsequent bioinformatic analyses allowed for prompt identification of the disease-causative agent as Salmonella enterica subsp. enterica serovar Paratyphi A. The National Reference Laboratory for Salmonella (NIPH) independently reported this isolate also as serovar Paratyphi A on the basis of results of biochemical and agglutination tests. Therefore, our results are in concordance with certified standards. Furthermore, the data enabled us to assess some basic questions concerning the comparative genomics, i.e., to describe whether the isolated strain differs from the formerly published ones or not. Quite surprisingly, these results indicate that we have detected a novel and so far, unknown variety of this bacteria

    Chronic Hepatitis C Virus Infection Modulates the Transcriptional Profiles of CD4+ T Cells

    No full text
    Background. Chronic hepatitis C (CHC) is associated with altered cell-mediated immune response. Objective. The aim of the study was to characterize functional alterations in CD4+ T cell subsets and myeloid-derived suppressor cells (MDSCs) during chronic hepatitis C virus (HCV) infection. Methodology. The expression levels of the lineage-defining transcriptional factors (TFs) T-bet, Gata3, Rorγt, and Foxp3 in circulating CD4+ T cells and percentages of MDSCs in peripheral blood were evaluated in 33 patients with CHC, 31 persons, who had spontaneously cleared the HCV infection, and 30 healthy subjects. Analysis. The CD4+ T cells TFs T-bet (T-box expressed in T cells), Foxp3 (Forkhead box P3 transcription factor), Gata3 (Gata-binding protein 3), and Rorγt (retinoic-acid-related orphan receptor gamma) and activation of CD8+ T cells, as well as percentages of MDSCs, were measured by multicolor flow cytometry after intracellular and surface staining of peripheral blood mononuclear cells with fluorescent monoclonal antibodies. Result. The patients with CHC had significantly lower percentages of CD4+ T cells expressing Rorγt and Gata3 and higher percentages of Foxp3-expressing CD4+ T cells than healthy controls and persons who spontaneously cleared HCV infection. The ratios of T-bet+/Gata3+ and Foxp3+/Rorγt+ CD4+ T cells were the highest in the patients with CHC. In the patients with CHC, the percentages of Gata3+ and Rorγt+ CD4+ T cells and the percentages of T-bet+ CD4+ T cells and CD38+/HLA-DR+ CD8+ T cells demonstrated significant positive correlations. In addition, the percentage of CD38+/HLA-DR+ CD8+ T cells correlated negatively with the percentage of MDSCs. Conclusion. Chronic HCV infection is associated with downregulation of TFs Gata3 and Rorγt polarizing CD4+ T cells into Th2 and Th17 phenotypes together with upregulation of Foxp3 responsible for induction of regulatory T cells suppressing immune response

    Genetic and karyotype divergence between parents affect clonality and sterility in hybrids

    No full text
    Asexual reproduction can be triggered by interspecific hybridization, but its emergence is supposedly rare, relying on exceptional combinations of suitable genomes. To examine how genomic and karyotype divergence between parental lineages affect the incidence of asexual gametogenesis, we experimentally hybridized fishes (Cobitidae) across a broad phylogenetic spectrum, assessed by whole exome data. Gametogenic pathways generally followed a continuum from sexual reproduction in hybrids between closely related evolutionary lineages to sterile or inviable crosses between distant lineages. However, most crosses resulted in a combination of sterile males and asexually reproducing females. Their gametes usually experienced problems in chromosome pairing, but females also produced a certain proportion of oocytes with premeiotically duplicated genomes, enabling their development into clonal eggs. Interspecific hybridization may thus commonly affect cell cycles in a specific way, allowing the formation of unreduced oocytes. The emergence of asexual gametogenesis appears tightly linked to hybrid sterility and constitutes an inherent part of the extended speciation continuum

    Retrospective Analysis Revealed an April Occurrence of Monkeypox in the Czech Republic

    No full text
    Herein, we present our findings of an early appearance of the Monkeypox virus in Prague, Czech Republic. A retrospective analysis of biological samples, carried out on the 28th of April, revealed a previously unrecognized case of Monkeypox virus (MPxV) infection. Subsequent data analysis confirmed that the virus strain belongs to the ongoing outbreak. Combined with clinical and epidemiological investigations, we extended the roots of the current outbreak at least back to 16th of April, 2022

    Supplementary Methods and Results from Cannabinoid receptor 2 evolutionary gene loss makes parrots more susceptible to neuroinflammation

    No full text
    In vertebrates, cannabinoids modulate neuroimmune interactions through two cannabinoid receptors (CNRs) conservatively expressed in the brain (CNR1, syn. CB1) and in the periphery (CNR2, syn. CB2). Our comparative genomic analysis indicates several evolutionary losses in the CNR2 gene that is involved in immune regulation. Notably, we show that the CNR2 gene pseudogenised in all parrots (Psittaciformes). This CNR2 gene loss occurred due to chromosomal rearrangements. Our positive selection analysis suggests the absence of any specific molecular adaptations in parrot CNR1 that would compensate for the CNR2 loss in the modulation of the neuroimmune interactions. Using transcriptomic data from the brains of birds with experimentally induced sterile inflammation we highlight possible functional effects of such a CNR2 gene loss. We compare the expression patterns of CNR and neuroinflammatory markers in CNR2-deficient parrots (represented by the budgerigar, Melopsittacus undulatus and five other parrot species) with CNR2-intact passerines (represented by the zebra finch, Taeniopygia guttata). Unlike in passerines, stimulation with lipopolysaccharide resulted in the parrots in neuroinflammation linked with a significant upregulation of expression in proinflammatory cytokines (including interleukin 1 beta, IL1B and IL6) in the brain. Our results indicate the functional importance of the CNR2 gene loss for increased sensitivity to brain inflammation
    corecore