2,526 research outputs found

    A national register for surveillance of inherited disorders: beta thalassaemia in the United Kingdom

    Get PDF
    OBJECTIVE: To demonstrate the value of a national register for surveillance of services for an inherited disorder. METHODS: Data from the United Kingdom Thalassaemia Register and the United Kingdom Register of Prenatal Diagnosis for Haemoglobin Disorders were combined in a database; these registers include all fetuses known to have been diagnosed with beta thalassaemia major, beta thalassaemia intermedia, or haemoglobin E/beta thalassaemia in the United Kingdom. Data were extracted to show outcomes (selective abortion or live birth) of all fetuses and the status of those born with a disorder (alive, dead, successful bone marrow transplant, or lost to follow-up) by parents' region of residence and ethnicity. FINDINGS: At the end of 1999 the register included 1074 patients, 807 of whom were alive and residing in the United Kingdom. A successful bone marrow transplant has been performed for 117 out of 581 (20%) patients born since 1975. Residents of Pakistani origin are now the main group at risk in the United Kingdom, replacing residents of Cypriot origin. This has led to a marked shift in the need for services from the south-east of England to the Midlands and the north of England. Despite the acceptability of prenatal diagnosis, the proportion of affected births remains 50% higher than would be expected, reflecting a widespread failure to deliver timely screening and counselling to carriers. Even though effective treatment is available the annual number of deaths is rising, indicating that better tolerated treatments are needed. CONCLUSION: A national diagnosis register is a powerful instrument for monitoring the treatment and prevention of inherited disorders and for highlighting correctable shortcomings. In view of the increasing possibilities for genetic screening there is a strong case for central funding for such databases within modern health services

    ODU Russell Stanger String Quartet and ODU Cello Choir

    Get PDF
    ODU Russell Stanger String Quartet: Jordan Goodmurphy, Violin Emily Pollard, Violin Joshua Clarke, Viola Michael Russo, Cello ODU Cello Choir: Carter Campbell Trinity Green Joshua Kahn Lexi McGinn Avery Suhay Aleta Tomas Lacey Wilso

    ANTIGENS OF LEUKEMIAS INDUCED BY NATURALLY OCCURRING MURINE LEUKEMIA VIRUS: THEIR RELATION TO THE ANTIGENS OF GROSS VIRUS AND OTHER MURINE LEUKEMIA VIRUSES

    Get PDF
    Leukemias can be induced in W/Fu inbred rats by neonatal inoculation of normal thymus cells of C58 mice. These leukemias are not transplantable to C58 mice or to adult W/Fu rats, but they can be kept in passage in W/Fu rats aged 0 to 7 days. Adult W/Fu rats inoculated repeatedly with these isogenic leukemias produce cytotoxic and precipitating antibodies. These antisera are of particular value in the analysis of the antigens of leukemia cells and of leukemia viruses because their mode of preparation precludes the formation of antibody against any normal constituents of the cell. Analysis based on the cytotoxic test indicates the presence of 2 distinct cell surface antigens in leukemias induced by Passage A Gross virus or occurring spontaneously in mice of high-incidence strains. All leukemias and other tissues known to contain G (Gross) leukemia antigen have both determinants, but certain leukemias of low-incidence strains have only 1 of them and so were previously classified G-. Immunoprecipitation with these antisera reveals the presence of a cellular antigen common to G+ cells and absent from G- cells; the same antigen can be demonstrated in ether-treated Gross virus, but not in intact virus. This antigen is present also in ether-treated preparations of the Friend, Moloney, and Rauscher leukemia viruses, but not in Bittner (mammary tumor) virus. Thus it may be regarded as a group-specific antigen of murine leukemia viruses, in contrast to the type-specific cellular antigens demonstrable by the cytotoxic test. Four additional antigens associated with leukemias induced by wild-type Gross virus have been demonstrated by immunoprecipitation, but their relation to viral and cellular antigens has not been determined

    SURFACE ALLOANTIGENS OF PLASMA CELLS

    Get PDF
    A serological study of immunoglobulin-forming cells of the mouse, normal and malignant, shows that they lack all known surface differentiation antigens of the thymocyte-lymphocyte axis: TL, θ, Ly-A, Ly-B, and MSLA. Two systems of normal alloantigens are expressed on these cells, H-2 and a new system named PC. The gene Pca (Plasma cell antigen) which specifies PC.1 alloantigen segregates as a mendelian dominant not closely linked with H-2. This cell surface antigen is absent from thymocytes, leukemias, and very probably from thymus-derived lymphocytes also; it is present on cells of the liver, kidney, brain, and lymph nodes as well as on hemolytic plaque-forming cells of the spleen, and on myelomas. So PC.1 is properly classified as a differentiation alloantigen. The strain distribution of PC.1 does not conform to that of any known immunoglobulin allotype or cell surface alloantigen previously described. Thus the cell surface antigens of immunoglobulin-producing cells are clearly different from those of cells belonging to the thymocyte-lymphocyte axis. Each family of cells has distinctive alloantigens, and the two families share alloantigens of only one known system, H-2. This implies that either immunoglobulin-producing cells are not derived from thymic lymphocytes, or if they are, the program responsible for the transition must include extensive revision of cell surface structure

    PRODUCTION OF TL ANTIBODY BY MICE IMMUNIZED WITH TL- CELL POPULATIONS : A POSSIBLE ASSAY FOR THYMIC HORMONE

    Get PDF
    TL- mice make TL antibody when immunized with spleen or bone marrow cells from TL+ donors, despite the fact that these cells do not express TL antigen. This has been shown to depend on maturation of TL- precursors, contained in the inoculum, into TL+ cells under influence of the recipient's thymus; the differentiated TL+ cells then evoke production of TL antibody

    THE GIX SYSTEM : A CELL SURFACE ALLO-ANTIGEN ASSOCIATED WITH MURINE LEUKEMIA VIRUS; IMPLICATIONS REGARDING CHROMOSOMAL INTEGRATION OF THE VIRAL GENOME

    Get PDF
    This report concerns a cell surface antigen (GIX; G = Gross) which exhibits mendelian inheritance but which also appears de novo in cells that become productively infected with MuLV (Gross), the wild-type leukemia virus of the mouse. In normal mice, GIX is a cell surface allo-antigen confined to lymphoid cells and found in highest amount on thymocytes. Four categories of inbred mouse strains can be distinguished according to how much GIX antigen is expressed on their thymocytes. GIX- strains have none; in the three GIX+ categories, GIX3, GIX2, and GIX1, the amounts of GIX antigen present (per thymocyte) are approximately in the ratios 3:2:1. A study of segregating populations derived mainly from strain 129 (the prototype GIX3 strain) and C57BL/6 (the prototype GIX- strain) revealed that two unlinked chromosomal genes are required for expression of GIX on normal lymphoid cells. The phenotype GIX+ is expressed only when both genes are present, as in 129 mice. C57BL/6 carries neither of them. At one locus, expression of GIX is fully dominant over nonexpression (GIX fully expressed in heterozygotes). At the second locus, which is linked with H-2 (at a distance of 36.4 ± 2.7 units) in group IX (locus symbol GIX), expression is semidominant (50% expression of GIX in heterozygotes); gene order T:H-2:Tla:GIX. As a rule, when cells of GIX- mice or rats become overtly infected with MuLV (Gross), an event which occurs spontaneously in older mice of certain strains and which also commonly accompanies malignant transformation, their phenotype is converted to GIX+. This invites comparison with the emergence of TL+ leukemia cells in TL- mouse strains which has been observed in previous studies and which implies that TL- → TL+ conversion has accompanied leukemic transformation of such cells. So far the only example of GIX- → GIX+ conversion taking place without overt MuLV infection is represented by the occurrence of GCSA-:GIX+ myelomas in BALB/c (GCSA:GIX-) mice. Unlike the other Gross cell surface antigen described earlier, GCSA, which is invariably associated with MuLV (Gross) infection and never occurs in its absence, GIX antigen sometimes occurs independently of productive MuLV infection; for example, thymocytes and some leukemias of 129 mice are GCSA-:GIX+, and MuLV-producing sarcomas may be GCSA+:GIX-. The frequent emergence of cells of GIX+ phenotype in all mouse strains implies that the structural gene coding for GIX antigen is common to all mice. There is precedent for this in the TL system, in which two of the Tla genes in linkage group IX appear to be ubiquitous among mice, but are normally expressed only in strains of mice carrying a second (expression) gene. It is not yet certain whether either of the two segregating genes belongs to the MuLV genome rather than to the cellular genome. This leaves the question whether MuLV may have a chromosomal integration site still debatable. But there is a good prospect that further genetic analysis will provide the answer and so elucidate the special relationship of leukemia viruses to the cells of their natural hosts

    Morphological identification of ticks and molecular detection of tick-borne pathogens from bare-nosed wombats (Vombatus ursinus)

    Get PDF
    Background: Ticks are obligate haematophagous ectoparasites of vertebrate hosts and transmit the widest range of pathogenic organisms of any arthropod vector. Seven tick species are known to feed on bare-nosed wombats (Vombatus ursinus), in addition to the highly prevalent Sarcoptes scabiei mite which causes fatal sarcoptic mange in most bare-nosed wombat populations. Little is known about the pathogens carried by most wombat ticks or how they may impact wombats and wombat handlers. Methods: Wombat ticks were sourced from wildlife hospitals and sanctuaries across Australia and identifed to species level using taxonomic keys. Genomic DNA was extracted from a subsample, and following the amplifcation of the bacterial 16S rRNA gene V3–V4 hypervariable region, next-generation sequencing (NGS) on the Illumina MiSeq platform was used to assess the microbial composition. Results: A total of 447 tick specimens were collected from 47 bare-nosed wombats between January 2019 and January 2020. Five species of ticks were identifed comprising wombat tick Bothriocroton auruginans (n = 420), wallaby tick Haemaphysalis bancrofti (n = 8), bush tick Haemaphysalis longicornis (n = 3), common marsupial tick Ixodes tasmani (n = 12), and Australian paralysis tick Ixodes holocyclus (n = 4). Tick infestations ranged from one to 73 ticks per wombat. The wombat tick was the most prevalent tick species comprising 94% of the total number of samples and was present on 97.9% (46/47) of wombat hosts. NGS results revealed the 16S rRNA gene diversity profle was predominantly Proteobacteria (55.1%) followed by Firmicutes (21.9%) and Actinobacteria (18.4%). A species of Coxiella sharing closest sequence identity to Coxiella burnetii (99.07%), was detected in 72% of B. auruginans and a Rickettsiella endosymbiont dominated the bacterial profle for I. tasmani. Conclusions: A new host record for H. longicornis is the bare-nosed wombat. One adult male and two engorged adult female specimens were found on an adult male wombat from Coolagolite in New South Wales, and more specimens should be collected to confrm this host record. The most prevalent tick found on bare-nosed wombats was B. auruginans, confrming previous records. Analysis of alpha-diversity showed high variability across both sample locations and instars, similar to previous studies. The detection of various Proteobacteria in this study highlights the high bacterial diversity in native Australian ticks

    Marsupial and monotreme milk : a review of its nutrient and immune properties

    Get PDF
    All mammals are characterized by the ability of females to produce milk. Marsupial (metatherian) and monotreme (prototherian) young are born in a highly altricial state and rely on their mother’s milk for the first part of their life. Here we review the role and importance of milk in marsupial and monotreme development. Milk is the primary source of sustenance for young marsupials and monotremes and its composition varies at different stages of development. We applied nutritional geometry techniques to a limited number of species with values available to analyze changes in macronutrient composition of milk at different stages. Macronutrient energy composition of marsupial milk varies between species and changes concentration during the course of lactation. As well as nourishment, marsupial and monotreme milk supplies growth and immune factors. Neonates are unable to mount a specific immune response shortly after birth and therefore rely on immunoglobulins, immunological cells and other immunologically important molecules transferred through milk. Milk is also essential to the development of the maternal-young bond and is achieved through feedback systems and odor preferences in eutherian mammals. However, we have much to learn about the role of milk in marsupial and monotreme mother-young bonding. Further research is warranted in gaining a better understanding of the role of milk as a source of nutrition, developmental factors and immunity, in a broader range of marsupial species, and monotremes

    SEROLOGICALLY DEMONSTRABLE ALLOANTIGENS OF MOUSE EPIDERMAL CELLS

    Get PDF
    Single cells were prepared from mouse tail epidermis by a method which gives high viability counts and so permits their use in cytotoxicity tests. According to tests with standard alloantisera, the antigen phenotype of mouse epidermal cells is H-2+θ+Sk+H-Y+TL-Ly-A-Ly-B,C-PC-. The skin differentiation alloantigen Sk, which is responsible for homograft reactions directed selectively against skin, is expressed also on brain, but not on other cell types; it is present on the transplanted neuroblastoma C1300. Cytotoxicity tests with epidermal cells of H-2 congenic mouse stocks confirm that the Sk locus is not closely linked to H-2. The lymphoid cell differentiation antigen θ also is present on both epidermal cells and brain. Mice frequently retain θ-incompatible or Sk-incompatible skin grafts although they have formed substantial titers of θ or Sk antibody in response to grafting. Male (H-Y) antigen is demonstrable on epidermal cells by cytotoxicity tests with H-Y antibody, as it is also on one other type of cell, spermatozoa
    • …
    corecore