4 research outputs found
Single–molecule conductance measurements: Correlations between chemical design and electronic properties
This thesis is about measurements of the electrical properties of different families of molecules. The research was focused on fundamental questions of charge transport in organic molecules. With this aim, experiments were performed to shed light on the underlying transport mechanisms. For example, an important ingredient of the work concerned the understanding of quantum interference effects in transport. On the other hand, several bio-inspired molecules were tested as electrical components revealing, for example, that with a certain chemical design a single-curcuminoid molecule act as a switch.QN/van der Zant La
Robust organic radical molecular junctions using acetylene terminated groups for c-au bond formation
Organic paramagnetic and electroactive molecules are attracting interest as core components of molecular electronic and spintronic devices. Currently, further progress is hindered by the modest stability and reproducibility of the molecule/electrode contact. We report the synthesis of a persistent organic radical bearing one and two terminal alkyne groups to form Au-C σ bonds. The formation and stability of self-assembled monolayers and the electron transport through single-molecule junctions at room temperature have been studied. The combined analysis of both systems demonstrates that this linker forms a robust covalent bond with gold and a better-defined contact when compared to traditional sulfur-based linkers. Density functional theory and quantum transport calculations support the experimental observation highlighting a reduced variability of conductance values for the C-Au based junction. Our findings advance the quest for robustness and reproducibility of devices based on electroactive molecules.Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.QN/van der Zant LabQN/Afdelingsburea
Synthesis and Single-Molecule Conductances of Neutral and Cationic Indenofluorene-Extended Tetrathiafulvalenes: Kondo Effect Molecules
Development of molecules that can switch between redox states with paired and unpaired electrons is important for molecular electronics and spintronics. In this work, a selection of redox-active indenofluorene-extended tetrathiafulvalenes (IF-TTFs) with thioacetate end groups was prepared from a readily obtainable dibromo-functionalized IF-TTF building block using palladium-catalyzed cross-coupling reactions, such as the Suzuki reaction. The end groups served as electrode anchoring groups for single-molecule conductance studies, and the molecules were subjected to mechanically controlled break-junction measurements with gold contacts and to low-bias charge transport measurements in gated three-terminal electromigration junctions. The neutral molecules showed clear conductance signatures, and somewhat surprisingly, we found that a meta-meta anchoring configuration gave a higher conductance than a para-meta configuration. We explain this behavior by "through-space" coupling between the gold electrode and the phenyl on which the anchoring group is attached. Upon charging the molecule in a gated junction, we found reproducibly a Kondo effect (zero-bias conductance) attributed to a net spin. Ready generation of radical cations was supported by cyclic voltammetry measurements, revealing stepwise formation of radical cation and dication species in solution. The first oxidation event was accompanied by association reactions as the appearance of the first oxidation peak was strongly concentration dependent.SolutionsImPhys/OpleidingTechnische NatuurkundeQN/van der Zant La
Electric-field induced bistability in single-molecule conductance measurements for boron coordinated curcuminoid compounds
We have studied the single-molecule conductance of a family of curcuminoid molecules (CCMs) using the mechanically controlled break junction (MCBJ) technique. The CCMs under study contain methylthio (MeS-) as anchoring groups: MeS-CCM (1), the free-ligand organic molecule, and two coordination compounds, MeS-CCM-BF2 (2) and MeS-CCM-Cu (3), where ligand 1 coordinates to a boron center (BF2 group) and to a CuII moiety, respectively. We found that the three molecules present stable molecular junctions allowing detailed statistical analysis of their electronic properties. Compound 3 shows a slight increase in the conductance with respect to free ligand 1, whereas incorporation of BF2 (compound 2) promotes the presence of two conductance states in the measurements. Additional experiments with control molecules point out that this bistability is related to the combination of MeS- anchoring groups and the BF2 moiety within the structure of the molecules. Theoretical calculations show that this can be explained by the presence of two conformers once compound 2 is anchored between the gold electrodes. An energy minimum is found for a flat structure but there is a dramatic change in the magnitude and orientation of dipole moment (favouring a non-flat conformer in the presence of an external electric field) due to a conformational change of one of the terminal MeS- groups. The results thus point to an intricate interplay between the applied bias voltage and the molecule dipole moment which could be the basis for designing new molecules aiming at controlling their conformation in devices.QN/van der Zant La