13 research outputs found

    A phase 2 trial investigating the efficacy and safety of the mPGES-1 inhibitor vipoglanstat in systemic sclerosis-related Raynaud's

    Get PDF
    OBJECTIVE: Our objective was to test the hypothesis, in a double-blind, placebo-controlled study that vipoglanstat, an inhibitor of microsomal prostaglandin E synthase-1 (mPGES-1) which decreases prostaglandin E2 (PGE2) and increases prostacyclin biosynthesis, improves RP.METHODS: Patients with systemic sclerosis (SSc) and ≄7 RP attacks during the last screening week prior to a baseline visit were randomised to four weeks treatment with vipoglanstat 120 mg or placebo. A daily electronic diary captured RP attacks (duration and pain) and Raynaud's Condition Score, with change in RP attacks/week as primary end point. Cold challenge assessments were performed at baseline and end of treatment. Exploratory endpoints included patients' and physicians' global impression of change, Assessment of Scleroderma-associated Raynaud's Phenomenon questionnaire, mPGES-1 activity, and urinary excretion of arachidonic acid metabolites.RESULTS: Sixty-nine subjects received vipoglanstat (n = 33) or placebo (n = 36). Mean weekly number of RP attacks (baseline; vipoglanstat 14.4[SD 6.7], placebo 18.2[12.6]) decreased by 3.4[95% CI -5.8;-1.0] and 4.2[-6.5;-2.0] attacks per week (p= 0.628) respectively. All patient reported outcomes improved, with no difference between the groups. Mean change in recovery of peripheral blood flow after cold challenge did not differ between the study groups. Vipoglanstat fully inhibited mPGES-1, resulting in 57% reduction of PGE2 and 50% increase of prostacyclin metabolites in urine. Vipoglanstat was safe and well tolerated.CONCLUSION: Although vipoglanstat was safe, and well tolerated in a dose achieving full inhibition of mPGES-1, it was ineffective in SSc-related RP. Further development and evaluation of vipoglanstat will therefore be in other diseases where mPGES-1 plays a pathogenetic role.</p

    Relationship of urinary isoprostanes to prostate cancer occurence

    Get PDF
    To estimate the oxidative stress in patients with prostate cancer and in a control group, we used the biomarker of lipid peroxidation–isoprostanes (8-isoPGF2) and the level of selected antioxidants (glucose and uric acid [UA]). The level of urinary isoprostanes was determined in patients and controls using an immunoassay kit according to the manufacturer’s instruction. The levels of UA and glucose were also determined in serum by the use of UA Assay Kit and Glucose Assay Kit. We observed a statistically increased the level of isoprostanes in urine of patients with prostate cancer in compared with a control group. The concentration of tested antioxidants in blood from patients with prostate cancer was also higher than in healthy subjects. Moreover, our experiments indicate that the correlation between the increased amount of UA and the lipid peroxidation exists in prostate cancer patients (in all tested groups). Prostate cancer risk by urinary isoprostanes level was analyzed, and a positive association was found (relative risk for highest vs. lowest quartile of urinary isoprostanes = 1.6; 95 % confidence interval 1.2–2.4; p for trend = 0.03). We suggest that reactive oxygen species induce peroxidation of unsaturated fatty acid in patients with prostate cancer, and the level of isoprostanes may be used as a non-invasive marker for determination of oxidative stress. We also propose that UA may enhance the oxidative stress in patients with prostate cancer.This study was supported by the Grant 506/810(KBO) from University of Lodz, Polan

    Zapalenie skĂłrno-mięƛniowe oporne na steroidy skutecznie leczone doĆŒylnym preparatem immunoglobulin

    No full text
    W pracy przedstawiono przypadek 58-letniej kobiety z zapaleniem skórno-mięƛniowym, u której pomimo zastosowania standardowego leczenia glikokortykosteroidami nie osiągnięto poprawy klinicznej. Wprowadzenie do terapii preparatu immunoglobulin doprowadziƂo do znacznego zwiększenia siƂy mięƛniowej, ustąpienia zmian skórnych i normalizacji parametrów laboratoryjnych. Forum Reumatol. 2019, tom 5, nr 4: 209–21

    A phase 2 trial investigating the efficacy and safety of the mPGES-1 inhibitor vipoglanstat in systemic sclerosis-related Raynaud's

    No full text
    OBJECTIVE: Our objective was to test the hypothesis, in a double-blind, placebo-controlled study that vipoglanstat, an inhibitor of microsomal prostaglandin E synthase-1 (mPGES-1) which decreases prostaglandin E2 (PGE2) and increases prostacyclin biosynthesis, improves RP.METHODS: Patients with systemic sclerosis (SSc) and ≄7 RP attacks during the last screening week prior to a baseline visit were randomised to four weeks treatment with vipoglanstat 120 mg or placebo. A daily electronic diary captured RP attacks (duration and pain) and Raynaud's Condition Score, with change in RP attacks/week as primary end point. Cold challenge assessments were performed at baseline and end of treatment. Exploratory endpoints included patients' and physicians' global impression of change, Assessment of Scleroderma-associated Raynaud's Phenomenon questionnaire, mPGES-1 activity, and urinary excretion of arachidonic acid metabolites.RESULTS: Sixty-nine subjects received vipoglanstat (n = 33) or placebo (n = 36). Mean weekly number of RP attacks (baseline; vipoglanstat 14.4[SD 6.7], placebo 18.2[12.6]) decreased by 3.4[95% CI -5.8;-1.0] and 4.2[-6.5;-2.0] attacks per week (p= 0.628) respectively. All patient reported outcomes improved, with no difference between the groups. Mean change in recovery of peripheral blood flow after cold challenge did not differ between the study groups. Vipoglanstat fully inhibited mPGES-1, resulting in 57% reduction of PGE2 and 50% increase of prostacyclin metabolites in urine. Vipoglanstat was safe and well tolerated.CONCLUSION: Although vipoglanstat was safe, and well tolerated in a dose achieving full inhibition of mPGES-1, it was ineffective in SSc-related RP. Further development and evaluation of vipoglanstat will therefore be in other diseases where mPGES-1 plays a pathogenetic role.</p

    A phase 2 trial investigating the efficacy and safety of the mPGES-1 inhibitor vipoglanstat in systemic sclerosis-related Raynaud's

    No full text
    OBJECTIVE Our objective was to test the hypothesis, in a double-blind, placebo-controlled study that vipoglanstat, an inhibitor of microsomal prostaglandin E synthase-1 (mPGES-1) which decreases prostaglandin E2 (PGE2) and increases prostacyclin biosynthesis, improves RP. METHODS Patients with systemic sclerosis (SSc) and ≄7 RP attacks during the last screening week prior to a baseline visit were randomised to four weeks treatment with vipoglanstat 120 mg or placebo. A daily electronic diary captured RP attacks (duration and pain) and Raynaud’s Condition Score, with change in RP attacks/week as primary end point. Cold challenge assessments were performed at baseline and end of treatment. Exploratory endpoints included patients’ and physicians’ global impression of change, Assessment of Scleroderma-associated Raynaud’s Phenomenon questionnaire, mPGES-1 activity, and urinary excretion of arachidonic acid metabolites. RESULTS Sixty-nine subjects received vipoglanstat (n = 33) or placebo (n = 36). Mean weekly number of RP attacks (baseline; vipoglanstat 14.4[SD 6.7], placebo 18.2[12.6]) decreased by 3.4[95% CI -5.8;-1.0] and 4.2[-6.5;-2.0] attacks per week (p= 0.628) respectively. All patient reported outcomes improved, with no difference between the groups. Mean change in recovery of peripheral blood flow after cold challenge did not differ between the study groups. Vipoglanstat fully inhibited mPGES-1, resulting in 57% reduction of PGE2 and 50% increase of prostacyclin metabolites in urine. Vipoglanstat was safe and well tolerated. CONCLUSION Although vipoglanstat was safe, and well tolerated in a dose achieving full inhibition of mPGES-1, it was ineffective in SSc-related RP. Further development and evaluation of vipoglanstat will therefore be in other diseases where mPGES-1 plays a pathogenetic role
    corecore