2,580 research outputs found

    Two-dimensional electron transport in the presence of magnetic flux vortices

    Full text link
    We have considered the conductivity properties of a two dimensional electron gas (2DEG) in two different kinds of inhomogeneous magnetic fields, i.e. a disordered distribution of magnetic flux vortices, and a periodic array of magnetic flux vortices. The work falls in two parts. In the first part we show how the phase shifts for an electron scattering on an isolated vortex, can be calculated analytically, and related to the transport properties through a force balance equation. In the second part we present numerical results for the Hall conductivity of the 2DEG in a periodic array of flux vortices. We find characteristic peaks in the Hall conductance, when plotted against the filling fraction. It is argued that the peaks can be interpreted in terms of ``topological charge'' piling up across local and global gaps in the energy spectrum.Comment: 47 pages, Revtex 3.0, 18 postscript figures can be obtained from our WWW-server: http://roemer.fys.ku.dk/vortices.htm , or on request from the Authors. Note that this paper is a thoroughly revised version of cond-mat/940405

    nu=1/2 quantum Hall effect in the Aharonov-Casher geometry in a mesoscopic ring

    Full text link
    We study the effect of an electric charge in the middle of a ring of electrons in a magnetic field such as ν=1/2\nu = 1/2. In the absence of the central charge, a residual current should appear due to an Aharanov-Bohm effect. As the charge varies, periodic currents should appear in the ring. We evaluate the amplitude of these currents, as well as their period as the central charge varies. The presence of these currents should be a direct signature of the existence of a statistical gauge field in the ν=1/2\nu=1/2 quantum Hall effect. Numerical diagonalizations for a small number of electrons on the sphere are also carried out. The numerical results up to 9 electrons are qualitatively consistent with the mean field picture.Comment: 23 pages,14 included postscript figures, submitted to Phys. Rev.

    The Aharonov-Bohm effect for massless Dirac fermions and the spectral flow of Dirac type operators with classical boundary conditions

    Get PDF
    We compute, in topological terms, the spectral flow of an arbitrary family of self-adjoint Dirac type operators with classical (local) boundary conditions on a compact Riemannian manifold with boundary under the assumption that the initial and terminal operators of the family are conjugate by a bundle automorphism. This result is used to study conditions for the existence of nonzero spectral flow of a family of self-adjoint Dirac type operators with local boundary conditions in a two-dimensional domain with nontrivial topology. Possible physical realizations of nonzero spectral flow are discussed.Comment: 15 pages, 6 figures. Submitted to Theoretical and Mathematical Physics. v2: A change has been made to the paragraph describing the previous work of M. Prokhorov
    • …
    corecore