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Abstract 

 

Contrary to common expectations, the hydroxyl scavengers carbonate and bicarbonate are able to 

enhance the phototransformation by nitrate of a number of substituted phenols. Carbonate and 

bicarbonate, in addition to modifying the solution pH, are also able to induce a considerable 

formation of the carbonate radicals upon nitrate photolysis. The higher availability of less reactive 

species than the hydroxyl radical would contribute to substantially enhance the photodegradation of 

the phenols/phenolates that are sufficiently reactive toward the carbonate radical. This phenomenon 

has a potentially important impact on the fate of the relevant compounds in surface waters. In 

contrast, the degradation of compounds that are not sufficiently reactive toward CO3
−• is inhibited 

by carbonate and bicarbonate because of the scavenging of •OH.  

 

Keywords. Photodegradation; photochemistry; pollutant fate; peroxynitrite; inorganic carbon. 

 

 

Introduction 
 

Photochemical processes are important pathways for the transformation of organic pollutants in 

surface waters. Direct and indirect photolysis reactions, the latter photosensitised by dissolved 

organic matter (DOM), nitrate, nitrite, and Fe(III) contribute to the removal of many xenobiotics 
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from the aquatic systems (Lam et al., 2003; Canonica et al., 2006; Canonica, 2007). Photochemistry 

can determine the impact of an organic pollutant to surface waters, partly because it can induce the 

degradation of the primary species, and partly because it produces transformation intermediates. 

Pollutant degradation might potentially lead to depollution, and in this respect the photochemical 

processes could be seen as a self-decontamination pathway for aquatic systems. However, the 

transformation intermediates have an impact of their own, which is sometimes higher compared to 

the parent compound (Brigante et al., 2005; Chiron et al., 2006 & 2007; Virag et al., 2007). 

The assessment of the impact of organic xenobiotics to surface waters will become an 

increasingly stringent requirement, in so far as the new European law on chemicals (REACH: 

Registration, Evaluation, and Authorisation of CHemicals) will require producers to provide 

evidence that their substances are safe to use and pose no risk (or limited risk) to human health and 

the environment (Lahl and Hawxwell, 2006). The oxidation of organic pollutants by the radical 
•OH is one of the most straightforward ways to achieve photochemical decontamination. The 

hydroxyl radical in freshwater is photochemically produced by the irradiation of nitrate, nitrite and 

DOM, but it is also scavenged by a number of solutes, among which are the DOM itself and 

inorganic carbon (carbonates and bicarbonates). The scavenging of the hydroxyl radicals 

significantly decreases their ability to induce pollutant degradation (Brezonik and Fulkerson-

Brekken, 1998). The reaction between •OH and carbonate (second-order rate constant 3.9×108 M−1 

s−1; Buxton et al., 1988) or bicarbonate (8.5×106 M−1 s−1) yields the carbonate radical, CO3
−•, which 

is reactive toward easily oxidised substrates (Huang and Mabury, 2000a/b; Canonica et al., 2005) 

but, in general, less reactive than •OH (Buxton et al., 1988; Neta et al., 1988; Mazellier et al., 2007). 

In natural waters the radical CO3
−• can reach a higher steady-state concentration than •OH because 

of its lower reactivity, considering that it undergoes lesser scavenging by DOM. In some cases the 

result is an enhancement of the photodegradation reactions, but more often the higher availability of 

CO3
−• could not compensate for its lower reactivity compared to •OH (Lam and Mabury, 2005). 

The carbonate radical usually reacts via one-electron oxidation toward organic molecules (Neta 

et al., 1988), which in many cases would lead to decontamination. Because of •OH scavenging, it is 

expected that carbonate and bicarbonate would inhibit the transformation of many organic 

substrates in the presence of nitrate under irradiation (Lam and Mabury, 2005), in particular in the 

absence of DOM. 

However, a recent study has shown that the situation is not necessarily that straightforward. 

NaHCO3 below 5 mM concentration is able to inhibit the degradation of phenol upon nitrate 

irradiation, in keeping with the scavenging of •OH, but the degradation rate of phenol starts 

increasing above 5 mM NaHCO3 (Chiron et al., 2009). Considering that the variation of pH cannot 

account for such a result, two possible explanations can be advanced. The first is that bicarbonate 

enhances the photolysis of nitrate through a solvent-cage effect, reacting with photolysis-derived 
•OH before it leaves the surrounding cage of the water molecules. The photolysis of nitrate yields 
•OH + •NO2, surrounded by water; the recombination of the radicals inside the solvent cage to yield 

back NO3
− + H+ decreases the quantum yield of •OH photoproduction (Bouillon and Miller, 2005). 
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The scavenging of in-cage •OH by bicarbonate and carbonate would be able to prevent 

recombination and, as a consequence, the generation rate of CO3
−• + •OH with NaHCO3 would be 

higher than for •OH alone without bicarbonate. An alternative explanation concerns the generation 

of peroxynitrite, ONOO−, upon nitrate photoisomerisation (Mack and Bolton, 1999). In the 

presence of bicarbonate, the species ONOO− can be transformed into CO3
−• + •NO2 (Goldstein et 

al., 2001; Squadrito and Pryor, 2002). 

The two processes could well be operational at the same time, and both of them would increase 

the photogeneration rate of CO3
−• and •NO2. Interestingly, the nitration of phenol is enhanced upon 

addition of NaHCO3 above 5 mM (Chiron et al., 2009), in keeping with a higher production of 
•NO2. The generation of toxic nitrophenols as secondary pollutants would partially compensate for 

the increased degradation of phenol in the presence of nitrate and NaHCO3. Note that bicarbonate 

has been shown to enhance the degradation of dimethyl sulphide (Bouillon and Miller, 2005) and 

bisphenol A (Espinoza et al., 2007) upon nitrate photolysis. 

The effect of bicarbonate on the photodegradation of organic compounds induced by nitrate 

irradiation would be a balance between the increased photogeneration of reactive transients on the 

one hand, and the replacement of •OH with a less reactive species (CO3
−•, albeit in higher amount) 

on the other. The balance could be different for compounds with different reactivity toward the 

carbonate radical. In this work the effect of bicarbonate was studied in the presence of various 

substrates of environmental concern, showing different reactivity toward CO3
−•. The results allow 

for a first generalisation of the bicarbonate effect on the nitrate-induced photodegradation of 

organic compounds. It will be seen that in many cases the •OH scavengers carbonate and 

bicarbonate are able to considerably enhance the photodegradation of substituted phenols.  

 

 

Experimental 
 

Reagents and materials 

Nitrobenzene (purity grade >99%), 4-fluorophenol (99%), 4-chlorophenol (>99%), 4-bromophenol 

(99%), 4-iodophenol (99%), 4-nitrophenol (98%), catechol (>99%), and 1,4-benzoquinone (98%) 

were purchased from Aldrich, H3PO4 (85%), NaH2PO4⋅H2O (>98%), Na2HPO4⋅2H2O (>98%), and 

NaNO3 (>99.5%) from VWR Int., acetonitrile (Supergradient HPLC grade) from Scharlau. All 

reagents were used as received, without further purification. Water used was of Milli-Q quality. 

 

Irradiation experiments 

Irradiation was carried out in cylindrical Pyrex glass cells (4.0 cm diameter, 2.3 cm height), 

containing 5 mL aqueous solution. To achieve selective excitation of nitrate, the radiation source 

was a 100 W Philips TL 01 UVB lamp, with emission maximum at 313 nm. The lamp emission 

spectrum is reported elsewhere (Vione et al., 2008). The total photon flux in the cells was 2.7 W 



 5

m−2, measured with a CO.FO.ME.GRA. (Milan, Italy) power meter, corresponding to 1.8×10−6 

einstein L−1 s−1 in solution.  

 

Analytical determinations 

After the scheduled irradiation time, the solutions were HPLC analysed with a VWR-Hitachi 

LaChrom Elite chromatograph, equipped with a model L-2200 autosampler, L-2130 pump for low-

pressure gradients, L-2300 column oven, Merck HIBAR 250-4 column (25.0 × 0.4 cm, packed with 

LiChrospher 100 CH-18/2, particle diameter 10 µm), and L-2455 photodiode array detector. Eluent 

flow rate was 1.00 mL min−1 in the isocratic mode, with a mixture of acetonitrile and aqueous 

H3PO4 (pH 2.8). Table 1 reports the eluent composition for the different analytes under study, 

together with the detection wavelength λ and the retention time tR (the column dead time was 1.50 

min). The solution pH was measured with a combined glass electrode, connected to a Metrohm 713 

pH meter. 

 

Initial rates and relative uncertainty 

The time evolution data of the substrates were fitted with the equation [P] t = [P] 0 exp(−kd
P t), 

where [P]t is the substrate concentration at the time t, [P]0 the initial concentration, and kd
P the 

pseudo-first order rate constant for substrate degradation. The initial degradation rate is given by kd
P 

[P]0. The rate data are reported together with the associated standard errors (intra-series variability, 

± σ, derived from the goodness of the fit of the equation to the experimental data). Inter-series 

variability (repeated runs) was around 15%. 

 

 

Table 1. Liquid chromatography (HPLC) conditions adopted for the analysis of the different 

compounds under study. 

 

Compound % CH3CN λλλλ, nm tR, min 

Nitrobenzene 55 264 5.40 

4-Fluorophenol 40 280 4.28 

4-Chlorophenol 50 220 4.83 

4-Bromophenol 60 226 3.64 

4-Iodophenol 70 233 3.16 

4-Nitrophenol 35 210 6.29 

Catechol 25 210 4.46 

1,4-Benzoquinone 15 227 6.43 
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Results and Discussion 
 

The transformation of different organic compounds at 25 µM initial concentration was studied in 

the presence of 10 mM NaNO3, and of NaHCO3 at concentrations up to around 10-15 mM. The 

addition of NaHCO3 significantly increased the solution pH, in a similar way for the different 

compounds under study. The main problems connected with the pH change are the modification of 

the photochemistry of nitrate, the potentially different quantum yields for the direct photolysis of 

the compounds that undergo acid-base equilibria, and the possible change of the reaction rate 

constants of the same compounds with the photogenerated reactive radical species (mainly •OH; 

Mack and Bolton, 1999). 

The photolysis of nitrate yields •OH both directly (reaction (1)), and indirectly via its 

photoisomerisation to peroxynitrite/peroxynitrous acid (reactions (2-4)) (Mack and Bolton, 1999). 

The problem is that peroxynitrous acid (HOONO, with pKa ≈ 7; Mark et al., 1996) can produce 
•OH upon decomposition but peroxynitrite does not, and an increase of pH would therefore reduce 

the yield of •OH photoproduction (Mack and Bolton, 1999). 

 

NO3
−  +  hν  +  H+  →  •OH  +  •NO2      (1) 

NO3
− + hν → ONOO−       (2) 

ONOO−  +  H+    HOONO      (3) 

HOONO  →  •OH  +  •NO2        (4) 

HOONO  →  NO3
−  +  H+       (5) 

 

Note that reaction (1) appears to be dependent on pH because the primary photolysis event yields 
•O− instead of •OH, and a subsequent protonation of •O− is required to produce the hydroxyl radical. 

However, the acid-base equilibrium •OH / •O− has pKa ≈ 12 and is therefore not significant under 

the adopted pH conditions (Mack and Bolton, 1999). 

Note that also •NO2 would be formed in the presence of NaNO3 + NaHCO3 under irradiation. Its 

reactivity is limited by the efficient hydrolysis into nitrite and nitrate, but nitrogen dioxide has the 

ability to nitrate aromatic compounds (Dzengel et al., 1999; Vione et al., 2004 & 2005). However, 

as a difference with phenol (Chiron et al., 2009), no nitroderivatives were detected in the present 

study under the adopted irradiation conditions. 

As far as the direct photolysis is concerned, the conjugate bases of the acidic aromatic substrates 

often show a shift of the absorption toward the visible, and in some cases have higher photolysis 

quantum yields than the undissociated compounds (with some exceptions; Vione et al., 2009a). For 

the reasons cited above it is important to take into account the effects of pH on nitrate 

photochemistry, on the direct photolysis of the aromatic substrates, and on their reactivity toward 

the photogenerated transients. These effects are not necessarily connected with the presence of 

carbonate or bicarbonate. Accordingly, the irradiation experiments were also carried out in the 

presence of 10 mM NaNO3 and of a phosphate buffer (NaH2PO4 + Na2HPO4), at the same total 
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concentration adopted in the corresponding runs with NaHCO3 and the same pH (within 0.1 pH 

units). The phosphate results are compared to those of the corresponding runs with NaHCO3. Note 

that at the adopted concentration values, the phosphate species would not be able to scavenge •OH 

to a significant extent (Buxton et al., 1988). Accordingly, the added phosphate is only expected to 

modify the solution pH. It was also studied the direct photolysis as a function of pH, in the absence 

of nitrate, upon addition of the same concentrations of NaHCO3 as for the nitrate runs. The results 

concerning nitrobenzene and catechol will be presented first because of their significance. 

 

Photodegradation of nitrobenzene 

 

Nitrobenzene is an interesting substrate to start with because it is a reasonably selective probe for 

the •OH radicals in aqueous solution (Watts and Linden, 2007), although some interfering reactions 

cannot be excluded (Vione et al., in press). Figure 1 reports the initial degradation rate of 

nitrobenzene upon irradiation of nitrate, as a function of the concentration of NaHCO3 or the 

phosphate buffer. The direct photolysis rates of nitrobenzene are also reported. Note the pH of the 

solutions on the upper X-axis. The reported pH values are those measured in the presence of 

NaNO3 + NaHCO3; in the other cases they were the same within 0.1 pH units.  

Nitrobenzene undergoes little to negligible direct photolysis. In the presence of nitrate + 

phosphate, the degradation rate of nitrobenzene decreases with increasing phosphate (and pH). The 

stabilisation of the rate above 5 mM phosphate is most likely connected to the pH trend, which 

reaches a plateau under the same conditions. In the system under study it is expected that the 

degradation rate of nitrobenzene is proportional to the photogeneration rate of the •OH radicals 

(Watts and Linden, 2007), which shows a significant decrease with pH in the basic range (reactions 

(1-5)) (Mark et al., 1996; Mack and Bolton, 1999). Note that the pH trend of nitrobenzene 

degradation, the rate of which decreases by a factor of about 2 between pH 6.6 and 8.5, is similar to 

that observed with phenol under comparable conditions (Chiron et al., 2009). 

It is possible to deduce the pH effect on the photoproduction of •OH, from the data of 

nitrobenzene photodegradation rate with the phosphate buffer (RNBz). The phosphate data of Figure 

1 were fitted numerically with a simple function that foresees a plateau at elevated phosphate 

concentration (fit variables were R°NBz, a and b): 

 















+⋅
+

⋅=
ab

a

Phosphate

Phosphate
NBz

o
NBz C

C
RR    (6) 

 

R°NBz is the photodegradation rate of nitrobenzene upon nitrate irradiation in the absence of 

bicarbonate or phosphate, and CPhosphate (in molarity) is the total concentration of the phosphate 

buffer. The numerical coefficients a and b obtained from the data fitting were 0.0075 and 2.25, 

respectively. Figure 1 shows the good agreement between the fitting equation and the experimental 

data. 
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The Figure also shows that NaHCO3 inhibits the degradation of nitrobenzene more than 

phosphate, therefore suggesting that the effect of bicarbonate is not only connected to pH. In the 

presence of NaHCO3, both the carbonate and the bicarbonate ions are able to scavenge •OH. 

Obviously the merely pH-dependent effect would still be operational, and it could be assessed by 

replacing CPhosphate with CNaHCO3 in equation (6). The degradation rate of nitrobenzene in the 

presence of NaNO3 + NaHCO3 was fitted with equation (7), which was derived from (6) by taking 

into account the competition for •OH between the aromatic substrate and the inorganic carbon 

species.  
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[NBz] is the initial concentration of nitrobenzene (25 µM), and kNBz, kHCO3− and kCO32− are the 

reaction rate constants of •OH with nitrobenzene, bicarbonate and carbonate (3.9×109, 8.5×106 and 

3.9×108 M−1 s−1, respectively; Buxton et al., 1988). For a and b they were adopted the values 

obtained by fitting of the phosphate data (0.0075 and 2.25). Such a procedure is based upon the 

hypothesis that the merely pH-dependent effect of bicarbonate is the same or comparable to that of 

the phosphate buffer. The values of [HCO3
−] and [CO3

2−] as a function of CNaHCO3 were determined 

by simple calculations of solution equilibria, considering that 

 

13NaHCO

W13NaHCO21

KaC

KKaCKaKa
][H

+
⋅+⋅⋅

=+        (8) 

 

where Ka1 and Ka2 are the acidic dissociation constants of carbonic acid, and KW is the auto-

protolysis constant of water (Martell et al., 1997). The very good fit of equation (7) to the 

experimental data is reported in Figure 1 (note that the only fit variable was R°NBz). The 

nitrobenzene trend can thus be accounted for by the reaction with •OH, in agreement with the 

literature reports that nitrobenzene does not react with CO3
−• to a significant extent (Neta et al., 

1988). Very understandably, bicarbonate could not be able to enhance the degradation of a substrate 

that does not undergo acid-base equilibria, and reacts negligibly with CO3
−•.  

 

Photodegradation of catechol 

 

Figure 2 reports the degradation rate of catechol (pKa ≈ 9.5) (Martell et al., 1997) in the presence of 

NaNO3 + phosphate and of NaNO3 + NaHCO3 under irradiation, and upon irradiation in the 

presence of NaHCO3, without nitrate. The degradation rates in the absence of nitrate are accounted 

for by thermal transformation rather than the direct photolysis. Indeed, the electron abstraction from 

cathecol to yield the semiquinone radical or 1,2-benzoquinone is favoured with increasing pH 

(Schweigert et al., 2001). To check for thermal degradation, the irradiation cells were wrapped in 
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aluminium foil and put under the lamp in the same conditions adopted for the irradiation runs. In 

the case of catechol, about the same degradation rates were obtained in the two series of 

experiments. Among the studied substrates, evidence of thermal degradation was only found for 

catechol and 1,4-benzoquinone. 

In the presence of nitrate + phosphate, the degradation rate of catechol is affected to a very 

limited extent. This suggests that the decrease of the •OH photogeneration rate by nitrate under 

basic conditions is roughly compensated for by the increased thermal degradation of catechol. 

Compared to the phosphate buffer, catechol degradation is significantly enhanced in the presence 

of NaHCO3. The approximately constant trend with phosphate (and pH as a consequence) is 

interesting because it provides a constant baseline. Over that baseline, the catechol / NaHCO3 data 

would measure the increase of the photogeneration rate of reactive species carried out by 

bicarbonate (mainly CO3
−•; Chiron et al., 2009). Interestingly, it has been shown that the carbonate 

radical and similar species can replace •OH as effective oxidants under definite conditions 

(Bahnemann et al., 1981 & 1983; Forni et al., 1982). 

Let R°NO3− be the formation rate of the reactive species upon nitrate irradiation, in the absence of 

bicarbonate. It would vary with pH, but in the case of catechol the thermal degradation would 

introduce a rough compensation: it is reasonable to hypothesise that the mere variation of pH upon 

addition of NaHCO3 would have the same, almost negligible effect on the degradation rate of 

catechol that was observed with the phosphate buffer. The additional photoformation rate of the 

reactive species induced by bicarbonate (RNO3−) could be obtained upon numerical fitting of the 

NaHCO3 data of Figure 2. The degradation rate of catechol at a given CNaHCO3 (RCatechol) would be 

the sum of the baseline (and approximately constant) R°Catechol, plus the effect of bicarbonate 

unaccounted for by pH (RNO3−). The experimental data could be fitted with the phenomenological 

equation (9), which allows for the quantification of RNO3− vs. CNaHCO3 (with R°Catechol and α as fit 

variables). 

 










+
⋅

+⋅=+= − 0.061C

C
1RRRR

3NaHCO

3NaHCOo
Catechol3NO

o
CatecholCatechol

α
   (9) 

 

It was obtained α = 11.3 upon numerical fitting of the experimental data. The value of α would be 

roughly proportional to the reactivity of catechol with the species produced by nitrate in the 

presence of bicarbonate. Figure 2 shows the very good quality of the fit. R°Catechol would measure 

the formation rate of the reactive species in the presence of nitrate alone, without bicarbonate or 

phosphate (mainly •OH; Mack and Bolton, 1999). The application of eq. (6) to the nitrobenzene 

data of Figure 1, and of eq. (9) to the catechol data of Figure 2, yielded in fact R°Catechol ≈ R°NBz ≈ 

2×10−9 M s−1. This result is expected because catechol and nitrobenzene are the only scavengers of 
•OH in each respective system. 
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Photodegradation of 1,4-benzoquinone 

 

Figure 3 reports the degradation rate of 1,4-benzoquinone (BQ) in the presence of NaNO3, with 

NaHCO3 or phosphate, and in the presence of NaHCO3, without nitrate. The decrease of BQ initial 

degradation rate with increasing phosphate, analogous to that already observed for nitrobenzene, 

can be ascribed to a lower generation rate of •OH by nitrate under basic conditions. In the case of 

BQ this effect cannot obviously be compensated for by acid-base equilibria. The further decrease of 

the degradation rate with increasing NaHCO3, again in analogy with the nitrobenzene findings, 

suggests that the scavenging of •OH by bicarbonate and carbonate is more important than the 

presumably low reactivity between benzoquinone and CO3
−•.  

The degradation of BQ without nitrate is mainly accounted for by the direct photolysis, and only 

to a lesser extent by the thermal decomposition. The importance of the direct photolysis could 

explain why the degradation of BQ is considerably faster than for the other substrates. However, the 

degradation rate of BQ with nitrate alone is about 1×10−8 M s−1 higher than the rate of the direct 

photolysis under comparable conditions. By comparison, the nitrobenzene and catechol data 

suggest that the photoformation rate of •OH from nitrate is R°•OH,NO3− ≈ 2×10−9 M s−1. The reason 

of the difference might be the involvement of the photoexcited states of benzoquinone (Puranik and 

Umapathy, 2002) in the transformation reactions. 

The rate data of BQ in the presence of phosphate were fitted with equation (10), which is a 

modified version of eq. (6) to take the direct photolysis into account (R°BQ, a, b, and c as fit 

variables). The data fitting yielded a = 0.0134, b = 9.87, and c = 1.2×10−8 M s−1. The values of a 

and b are different compared to nitrobenzene, possibly because of the involvement of BQ excited 

states in the reactions. The value of c obtained from the fitting is slightly lower than the rate of BQ 

direct photolysis. The photolysis would be slower in the presence of nitrate, and the likely reason is 

the competition between BQ and nitrate for the absorption of UVB radiation. 
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The bicarbonate data were fitted with equation (11), which is a modification of (7), adopting a = 

0.0134, b = 9.87, c = 1.2×10−8 M s−1, kBQ = 1.2×109 M−1 s−1, and R°BQ as the only fit variable. The 

good fit between eq. (11) and the experimental data indicates that the bicarbonate effect on BQ 

degradation is mainly due to the scavenging of •OH. 
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Photodegradation of 4-nitrophenol 

 

Figure 4 reports the degradation rate of 25 µM 4-nitrophenol (4NP) upon irradiation of 10 mM 

NaNO3, as a function of the concentration of NaHCO3 or phosphate, and without nitrate upon 

addition of bicarbonate. Note that 4NP undergoes direct photolysis to a negligible extent.  

Interestingly, the degradation rate of 4NP is almost unaffected by phosphate. The decrease of the 

formation rate of •OH upon basification is likely compensated for by the higher reactivity of the 4-

nitrophenolate under irradiation (the pKa of 4NP is around 7.1) (Martell et al., 1997). Indeed, the 

reaction rate constant of the undissociated 4NP with •OH is approximately one half than that of the 

nitrophenolate (Buxton et al., 1988). By analogy with the •OH reactivity, the nitrophenolate could 

also undergo faster degradation upon reaction with other photogenerated transients (e.g. 

peroxynitrite and nitrogen dioxide). 

The addition of NaHCO3 inhibits the degradation of 4NP, probably because of the •OH 

scavenging by carbonate and bicarbonate. The trend expected for the •OH scavenging is described 

by eq. (7), replacing NBz with 4NP, with a = 0.0075 and b = 2.25, and k4NP as for the 

nitrophenolate. Eq. (7) is shown as a solid line on Figure 4. Clearly, bicarbonate inhibits the 

transformation of 4NP less than expected from the scavenging of •OH. To account for such a 

disagreement, it is possible to hypothesise a reaction between 4NP and the reactive species formed 

from nitrate and bicarbonate (mostly CO3
−•; Chiron et al., 2009). Literature data show that the 

second-order rate constant for the reaction between the 4-nitrophenolate and CO3
−• is 4.8×107 M−1 

s−1 (Neta et al., 1988), significant albeit much lower than the 7.6×109 M−1 s−1 for the reaction with 
•OH (Buxton et al., 1988). 

A suitable equation to describe the trend of 4NP vs. bicarbonate should consider altogether the 

pH trend of nitrate photolysis (eq. 6), the competition of 4NP with carbonate and bicarbonate for 

the reaction with •OH (eq. 7), and the production of reactive species by nitrate as enhanced by 

bicarbonate (eq. 9). One would therefore obtain equation (12) to describe the trend of 4NP: 
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With a = 0.0075, b = 2.25, k4NP as for the nitrophenolate, and R°4NP and α as fit variables, one gets 

a reasonable fit to the experimental data as shown in Figure 4. It is α = 1.96 for 4NP, much lower 

than for catechol. This finding is in agreement with the fact that, unlike catechol, the degradation of 

4NP is inhibited and not enhanced by bicarbonate. 
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Photodegradation of 4-halogenophenols 

 

Figure 5 reports the initial degradation rates of 4-fluoro-, 4-chloro-, 4-bromo- and 4-iodophenol 

(4FP, 4CP, 4BP, 4IP) upon irradiation in the presence of NaNO3 + NaHCO3 or the phosphate 

buffer, and upon direct photolysis without nitrate in the presence of bicarbonate. 

All the four compounds undergo acid-base equilibria, with pKa values in the 9 to 10 range (4FP: 

9.9; 4CP: 9.4; 4BP: 10; 4IP: 9.2) (Martell et al., 1997). The behaviour of 4CP is remarkable because 

this compound undergoes direct photolysis to a very significant extent under basic conditions, since 

the chlorophenolate is photochemically unstable (Grabner and Richard, 2005; Czaplicka, 2006). 

Interestingly, the comparison of the direct photolysis and phosphate data suggests that a possible 

reaction might take place between bicarbonate or carbonate and the excited states of 4CP. It could 

explain the peculiarly elevated degradation rate of 4CP in the presence of NaHCO3, with or without 

nitrate. The direct photolysis is significant but less important for the remaining compounds, and the 

trend with phosphate would include the contributions of the undissociated phenols and of the 

phenolates toward the direct photolysis and the reaction with •OH. The phosphate trends of 4FP and 

4IP could be considered as roughly constant (very roughly in the case of 4FP), while in the case of 

4BP there is a slight increase of the kind R4BP ≈ R°4BP + (4.4±1.1)×10−7 CPhosphate.  

Given the nature of the phosphate baseline, the bicarbonate data of 4FP and 4IP were fitted with 

eq. (9), obviously by replacing catechol with the relevant compound, while for 4BP the term 

(4.4±1.1)×10−7 CNaHCO3 was added at the RHS of the equation. The data concerning 4CP were not 

fitted because of the high importance of the direct photolysis. The fit yielded α ≈ 5 for 4FP, 17 for 

4BP, and 15 for 4IP. Figure 5 shows the good quality of the fit to the experimental data. 

Interestingly, fluorine as the most electronegative substituent gave the lowest value of α, which is 

expected because 4FP should have lower electron density on the aromatic ring compared to 4BP or 

4IP. The low electron density of 4FP would result into lower reactivity compared to 4BP or 4IP. 

 

Environmental significance 

 

Under the hypothesis that the degradation of catechol is mainly accounted for by the reactions with 
•OH and CO3

−•, and that catechol is the major sink of these species in solution, the increase of the 

generation rate of •OH + CO3
−• carried out by bicarbonate in the presence of nitrate under 

irradiation would be expressed by RNO3− in eq. (9). Furthermore, the good fit of eqs. (6) and (7) to 

the experimental nitrobenzene data of Figure 1 suggests that the degradation rate of nitrobenzene is 

similar or at least proportional to the photogeneration rate of •OH. Accordingly, a suitable 

phenomenological equation to describe the trend of the •OH photogeneration rate by nitrate under 

basic conditions is eq. (6), provided that RNBz and R°NBz are replaced by R•OH,NO3− and R°•OH,NO3−. 

The two latter quantities represent the photoformation rate of •OH by nitrate, respectively in the 

presence and in the absence of the phosphate buffer. Considering that bicarbonate would have about 

the same effect on pH under the adopted laboratory conditions and in natural systems (Chiron et al., 
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2009), equation (6) would be relevant for the environmental cases provided that CPhosphate is 

replaced by the total amount of inorganic carbon, expressed in moles of C per litre, hereafter [IC]. 

In summary, one gets eq. (13): 
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By combination of eqs. (9) and (13), one gets that the total formation rate of the reactive transients 

in the presence of nitrate and bicarbonate under irradiation (Rtot
NO3−/HCO3−) would be given by 

R•OH,NO3− + RNO3−, as follows: 
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with a = 0.0075, b = 2.25, and α = 11.3. Figure 6 reports eq. (14) (Rtot
NO3−/HCO3− / R°•OH/NO3− vs. 

[IC]), which shows an interesting monotonic increase. This means that the α term, which increases 

with [IC], prevails over the term containing a and b that decreases with [IC].  

An important issue is that the formation of reactive species, described by equation (14), would 

take place upon reaction between •OH and carbonate/bicarbonate when the former is still inside the 

solvent cage after nitrate photolysis, or via peroxynitrite + bicarbonate (Chiron et al., 2009), rather 

than upon scavenging of •OH by carbonate/bicarbonate in the solution bulk. Accordingly, while the 

bulk process is expected to undergo inhibition by DOM, the same is not necessarily true of the 

reactions described phenomenologically by equation (14). Additional research will be conducted to 

understand if and to what extent DOM can scavenge solvent-cage •OH or peroxynitrite. 

In the first metre of the Lake Greifensee (Switzerland) under summertime irradiation conditions, 

it is R°•OH,NO3− ≈ 1.3×10−11 M s−1, and the formation rate of CO3
−• through scavenging of •OH by 

carbonate and bicarbonate ([IC] ≈ 2 mM) would be RCO3−• = 2×10−12 M s−1 (Canonica et al., 2005). 

Despite RCO3−• = 0.15 R°•OH,NO3−, because of the lower scavenging by DOM the carbonate radical 

could still account for the degradation of easily oxidised substrates (e.g. aniline, 4-

hydroxybenzoate), to a comparable or even higher extent than •OH (Vione et al., 2009b). Very 

interestingly, from eq. (14) one gets that the total formation rate of the reactive species in the first 

metre of the Lake Greifensee would be Rtot
NO3−/HCO3− = 1.5×10−11 M s−1. The direct generation rate 

of CO3
−• from nitrate + bicarbonate would be at least 2×10−12 M s−1, roughly equal to the formation 

rate of the carbonate radical upon scavenging of •OH by HCO3
− and CO3

2−. The total formation rate 

of CO3
−• (around 4×10−12 M s−1) would therefore be double compared to the contribution of the 

scavenging alone. The effect would be even more marked for carbonate-richer environments, and 

the consequence is that the role of CO3
−• in surface-water photochemistry could be considerably 

higher than is usually assumed. DOM could scavenge the radicals after their formation, as it already 

does with •OH and CO3
−• from the “traditional” processes, but it is less likely to prevent their 
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formation (Chiron et al., 2009). Accordingly, carbonate and bicarbonate could significantly enhance 

the photodegradation by nitrate of electron-rich compounds in surface waters. Such an effect would 

take place instead of the expected inhibition of photodegradation, with potentially very important 

consequences on the fate of many electron-rich phenolic pollutants in surface waters. 

 
 
Conclusions 
 

It was studied the effect of the •OH scavengers bicarbonate and carbonate on the rate of 

photodegradation upon nitrate irradiation of different compounds (substituted phenols, 

nitrobenzene, benzoquinone). The following conclusions could be obtained: 

(i) The mere basification of the solution decreases the generation rate of •OH by irradiated 

nitrate, most likely because of the acid-base equilibrium between HOONO and ONOO−. 

Peroxynitrite is in fact unable to yield •OH (Mack and Bolton, 1999). The decrease with pH of the 

rate of •OH photogeneration by nitrate would be the only operational effect for the compounds that 

do not undergo acid-base equilibria, such as nitrobenzene and benzoquinone. They show, therefore, 

a decreasing degradation rate with increasing pH.  

(ii)  The presence of bicarbonate and carbonate would further decrease the availability of •OH 

through scavenging. However, because of different effects (Chiron et al., 2009), the generation rate 

of •OH + CO3
−• in the presence of NaHCO3 would be higher than that of •OH alone in its absence. 

The budget could still lead to a decrease of the transformation rate of the substrates that are poorly 

reactive toward CO3
−•, such as nitrobenzene, 1,4-benzoquinone, and 4-nitrophenol. They are 

electron-poor systems that require •OH to be effectively degraded. For more electron-rich systems 

such as the 4-halogenophenols and catechol the addition of NaHCO3 significantly enhances the 

phototransformation kinetics. The rate constant with CO3
−• is 4.8×107 M−1 s−1 for 4NP that 

undergoes a slight inhibition of degradation in the presence of NaHCO3 (α ≈ 2), and 1.8×108 M−1 

s−1 for 4BP, the degradation of which is enhanced by bicarbonate (α ≈ 17). It could therefore be 

inferred that the value of the carbonate rate constant for which there is a transition between 

enhancement and inhibition should be somewhere around 108 M−1 s−1. An overview of the data 

(where available) of k•OH, kCO3−•, pKa and α for the different compounds under study is reported in 

Table 2. 

(iii)  The degradation rates of the substrates under study could be fitted well by eqs. (6,7,9-12). 

The abundance of possible fitting equations is just apparent because eq. (12) is a generalised case 

for (6) and (7). Accordingly, eq. (12) is reduced to (7) for α = 0, and to (6) for both α = 0 and 

[HCO3
−] = [CO3

2−] = 0. Additionally, (10) and (11) differ from (6) and (7) only by the presence of a 

constant c. As a consequence, the main choice is between eqs. (9) and (12), with (9) being more 

suitable in the presence of a constant pH (phosphate) baseline. In some cases eqs. (9) or (12) have 

to be modified to take the direct photolysis into account. 
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The significance of the reported findings should be stressed because a substantial degradation 

enhancement was observed with a number of substrates, upon addition of the •OH scavengers 

carbonate and bicarbonate. It should also be pointed out that the described phenomenon is 

independent of the fact that CO3
−• can reach a higher steady-state concentration in surface waters 

compared to •OH. In other words, the effect described in this work would solely be connected to a 

higher generation rate of the reactive species, induced by bicarbonate in the presence of nitrate 

under irradiation. The well-known ability of CO3
−• to undergo scavenging by DOM to a lesser 

extent than •OH in natural systems (Huang and Mabury, 2000a; Canonica et al., 2005) is a different 

phenomenon, but it could further amplify the impact of an increased photogeneration rate of CO3
−• 

in surface waters. 
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Table 2. Data concerning the studied substrates, relevant to the results of the present study. The 

values of k•OH are taken from Buxton et al. (1988), those of kCO3−• from Neta et al. (1988), 

those of pKa from Martell et al. (1997). The values of α were obtained in the present 

study. 

 

Compound pKa k••••OH, M−−−−1 s−−−−1 kCO3−−−−••••, M
−−−−1 s−−−−1 αααα 

Nitrobenzene N/a 3.9×109 N/a 0 

4-Fluorophenol 9.9 N/a N/a 5 

4-Chlorophenol 9.4 7.6×109 1.9×108 (*) N/a 

4-Bromophenol 10 N/a 1.8×108 (*) 17 

4-Iodophenol 9.2 N/a N/a 15 

4-Nitrophenol 7.1 3.8×109 

7.6×109 (*) 

4.8×107 (*) 1.96 

Catechol 9.5 1.1×1010 N/a 11.3 

1,4-Benzoquinone N/a 1.2×109 N/a 0 

 

N/a: Not applicable or not available 

(*): the datum is referred to the phenolate 
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Figure 1. Initial degradation rate of 25 µM nitrobenzene upon UVB irradiation of 10 mM NaNO3, 

as a function of the concentration of NaHCO3 or the phosphate buffer, and upon direct 

photolysis under UVB irradiation (addition of NaHCO3). The pH values are reported on 

the second X-axis, in correspondence to the adopted CNaHCO3. In the case of the phosphate 

buffer, the pH is the same within 0.1 units. The phosphate data are fitted with eq. (6), the 

bicarbonate ones with eq. (7). 
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Figure 2. Initial degradation rate of 25 µM catechol upon UVB irradiation of 10 mM NaNO3, as a 

function of the concentration of NaHCO3 or the phosphate buffer, and upon direct 

photolysis under UVB irradiation (addition of NaHCO3). Note the pH values on the 

second X-axis. The bicarbonate data were fitted with eq. (9). 
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Figure 3. Initial degradation rate of 25 µM 1,4-benzoquinone upon UVB irradiation of 10 mM 

NaNO3, as a function of the concentration of NaHCO3 or the phosphate buffer, and upon 

direct photolysis under UVB irradiation (addition of NaHCO3). Note the pH values on 

the second X-axis. The phosphate data were fitted with eq. (10), the bicarbonate ones 

with eq. (11). 
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Figure 4. Initial degradation rate of 25 µM 4-nitrophenol upon UVB irradiation of 10 mM NaNO3, 

as a function of the concentration of NaHCO3 or the phosphate buffer, and upon direct 

photolysis under UVB irradiation (addition of NaHCO3). Note the pH values on the 

second X-axis. The bicarbonate data were fitted with eq. (12). The trend expected by 

application of eq. (7) is also reported (pure •OH scavenging). In eq. (7) NBz should be 

replaced by 4NP, and k4NP is referred to the nitrophenolate. 
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Figure 5. Initial degradation rate of 25 µM 4-fluorophenol (4FP, (a)), 4-chlorophenol (4CP, (b)), 4-

bromophenol (4BP, (c)), and 4-iodophenol (4IP, (d)), upon UVB irradiation of 10 mM 

NaNO3, as a function of the concentration of NaHCO3 or the phosphate buffer, and upon 

direct photolysis under UVB irradiation (addition of NaHCO3). Note the pH values on 

the second X-axis. 
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Figure 6. Formation rate of reactive species (Rtot
NO3−/HCO3− / R°•OH/NO3−) as a function of the 

inorganic carbon, [IC] (eq. (14)). Note the monotonic increase of (Rtot
NO3−/HCO3− / 

R°•OH/NO3−) vs. [IC]. 

 

 


