107 research outputs found

    Invading interfaces and blocking surfaces in high dimensional disordered systems

    Full text link
    We study the high-dimensional properties of an invading front in a disordered medium with random pinning forces. We concentrate on interfaces described by bounded slope models belonging to the quenched KPZ universality class. We find a number of qualitative transitions in the behavior of the invasion process as dimensionality increases. In low dimensions d<6d<6 the system is characterized by two different roughness exponents, the roughness of individual avalanches and the overall interface roughness. We use the similarity of the dynamics of an avalanche with the dynamics of invasion percolation to show that above d=6d=6 avalanches become flat and the invasion is well described as an annealed process with correlated noise. In fact, for d5d\geq5 the overall roughness is the same as the annealed roughness. In very large dimensions, strong fluctuations begin to dominate the size distribution of avalanches, and this phenomenon is studied on the Cayley tree, which serves as an infinite dimensional limit. We present numerical simulations in which we measured the values of the critical exponents of the depinning transition, both in finite dimensional lattices with d6d\leq6 and on the Cayley tree, which support our qualitative predictions. We find that the critical exponents in d=6d=6 are very close to their values on the Cayley tree, and we conjecture on this basis the existence of a further dimension, where mean field behavior is obtained.Comment: 12 pages, REVTeX with 2 postscript figure

    On the random neighbor Olami-Feder-Christensen slip-stick model

    Full text link
    We reconsider the treatment of Lise and Jensen (Phys. Rev. Lett. 76, 2326 (1996)) on the random neighbor Olami-Feder-Christensen stik-slip model, and examine the strong dependence of the results on the approximations used for the distribution of states p(E).Comment: 6pages, 3 figures. To be published in PRE as a brief repor

    Anomalous Height Fluctuation Width in Crossover from Random to Coherent Surface Growths

    Full text link
    We study an anomalous behavior of the height fluctuation width in the crossover from random to coherent growths of surface for a stochastic model. In the model, random numbers are assigned on perimeter sites of surface, representing pinning strengths of disordered media. At each time, surface is advanced at the site having minimum pinning strength in a random subset of system rather than having global minimum. The subset is composed of a randomly selected site and its (1)(\ell-1) neighbors. The height fluctuation width W2(L;)W^2(L;\ell) exhibits the non-monotonic behavior with \ell and it has a minimum at \ell^*. It is found numerically that \ell^* scales as L0.59\ell^*\sim L^{0.59}, and the height fluctuation width at that minimum, W2(L;)W^2(L;\ell^*), scales as L0.85\sim L^{0.85} in 1+1 dimensions. It is found that the subset-size (L)\ell^*(L) is the characteristic size of the crossover from the random surface growth in the KPZ universality, to the coherent surface growth in the directed percolation universality.Comment: 13 postscript file

    Exact Results for the One-Dimensional Self-Organized Critical Forest-Fire Model

    Full text link
    We present the analytic solution of the self-organized critical (SOC) forest-fire model in one dimension proving SOC in systems without conservation laws by analytic means. Under the condition that the system is in the steady state and very close to the critical point, we calculate the probability that a string of nn neighboring sites is occupied by a given configuration of trees. The critical exponent describing the size distribution of forest clusters is exactly τ=2\tau = 2 and does not change under certain changes of the model rules. Computer simulations confirm the analytic results.Comment: 12 pages REVTEX, 2 figures upon request, dro/93/

    Anisotropic Interface Depinning - Numerical Results

    Full text link
    We study numerically a stochastic differential equation describing an interface driven along the hard direction of an anisotropic random medium. The interface is subject to a homogeneous driving force, random pinning forces and the surface tension. In addition, a nonlinear term due to the anisotropy of the medium is included. The critical exponents characterizing the depinning transition are determined numerically for a one-dimensional interface. The results are the same, within errors, as those of the ``Directed Percolation Depinning'' (DPD) model. We therefore expect that the critical exponents of the stochastic differential equation are exactly given by the exponents obtained by a mapping of the DPD model to directed percolation. We find that a moving interface near the depinning transition is not self-affine and shows a behavior similar to the DPD model.Comment: 9 pages, 13 figures, REVTe

    Pulse-coupled relaxation oscillators: from biological synchronization to Self-Organized Criticality

    Full text link
    It is shown that globally-coupled oscillators with pulse interaction can synchronize under broader conditions than widely believed from a theorem of Mirollo \& Strogatz \cite{MirolloII}. This behavior is stable against frozen disorder. Beside the relevance to biology, it is argued that synchronization in relaxation oscillator models is related to Self-Organized Criticality in Stick-Slip-like models.Comment: 4 pages, RevTeX, 1 uuencoded postscript figure in separate file, accepted for publication in Phys. Rev. Lett

    Self-organized criticality and synchronization in a lattice model of integrate-and-fire oscillators

    Full text link
    We introduce two coupled map lattice models with nonconservative interactions and a continuous nonlinear driving. Depending on both the degree of conservation and the convexity of the driving we find different behaviors, ranging from self-organized criticality, in the sense that the distribution of events (avalanches) obeys a power law, to a macroscopic synchronization of the population of oscillators, with avalanches of the size of the system.Comment: 4 pages, Revtex 3.0, 3 PostScript figures available upon request to [email protected]

    Breakdown of self-organized criticality

    Full text link
    We introduce two sandpile models which show the same behavior of real sandpiles, that is, an almost self-organized critical behavior for small systems and the dominance of large avalanches as the system size increases. The systems become fully self-organized critical, with the critical exponents of the Bak, Tang and Wiesenfeld model, as the system parameters are changed, showing that these systems can make a bridge between the well known theoretical and numerical results and what is observed in real experiments. We find that a simple mechanism determines the boundary where self-organized can or cannot exist, which is the presence of local chaos.Comment: 3 pages, 4 figure

    On the robustness of scale invariance in SOC models

    Full text link
    A random neighbor extremal stick-slip model is introduced. In the thermodynamic limit, the distribution of states has a simple analytical form and the mean avalanche size, as a function of the coupling parameter, is exactly calculable. The system is critical only at a special point Jc in the coupling parameter space. However, the critical region around this point, where approximate scale invariance holds, is very large, suggesting a mechanism for explaining the ubiquity of scale invariance in Nature.Comment: 6 pages, 4 figures; submitted to Physical Review E; http://link.aps.org/doi/10.1103/PhysRevE.59.496

    Synchronization in coupled map lattices as an interface depinning

    Full text link
    We study an SOS model whose dynamics is inspired by recent studies of the synchronization transition in coupled map lattices (CML). The synchronization of CML is thus related with a depinning of interface from a binding wall. Critical behaviour of our SOS model depends on a specific form of binding (i.e., transition rates of the dynamics). For an exponentially decaying binding the depinning belongs to the directed percolation universality class. Other types of depinning, including the one with a line of critical points, are observed for a power-law binding.Comment: 4 pages, Phys.Rev.E (in press
    corecore