486 research outputs found
Rank one discrete valuations of power series fields
In this paper we study the rank one discrete valuations of the field
whose center in k\lcor\X\rcor is the maximal ideal. In
sections 2 to 6 we give a construction of a system of parametric equations
describing such valuations. This amounts to finding a parameter and a field of
coefficients. We devote section 2 to finding an element of value 1, that is, a
parameter. The field of coefficients is the residue field of the valuation, and
it is given in section 5.
The constructions given in these sections are not effective in the general
case, because we need either to use the Zorn's lemma or to know explicitly a
section of the natural homomorphism R_v\to\d between the ring and
the residue field of the valuation .
However, as a consequence of this construction, in section 7, we prove that
k((\X)) can be embedded into a field L((\Y)), where is an algebraic
extension of and the {\em ``extended valuation'' is as close as possible to
the usual order function}
Key polynomials for simple extensions of valued fields
Let be a simple transcendental extension
of valued fields, where is equipped with a valuation of rank 1. That
is, we assume given a rank 1 valuation of and its extension to
. Let denote the valuation ring of . The purpose
of this paper is to present a refined version of MacLane's theory of key
polynomials, similar to those considered by M. Vaqui\'e, and reminiscent of
related objects studied by Abhyankar and Moh (approximate roots) and T.C. Kuo.
Namely, we associate to a countable well ordered set the are called {\bf key
polynomials}. Key polynomials which have no immediate predecessor are
called {\bf limit key polynomials}. Let .
We give an explicit description of the limit key polynomials (which may be
viewed as a generalization of the Artin--Schreier polynomials). We also give an
upper bound on the order type of the set of key polynomials. Namely, we show
that if then the set of key polynomials has
order type at most , while in the case
this order type is bounded above by , where stands
for the first infinite ordinal.Comment: arXiv admin note: substantial text overlap with arXiv:math/060519
Web 2.0 en el proceso de enseñanza-aprendizaje. Aplicación a la enseñanza de Economía de la Empresa
El uso de Internet y su evolución acelerada en el tiempo no afecta exclusivamente a las empresas, sino que su ritmo viene marcado precisamente por los que se han de considerar nuevos productores de contenido en la Red. La Universidad no puede quedarse atrás en el uso de las TIC pero tampoco puede centrarse exclusivamente en plataformas de aprendizaje on-line de sofisticación elevada –OCW, Moodle, entre otros-, pero sin otorgar poder para modificar y generar contenidos a los usuarios. La Unidad Docente de Organización de Empresas del Departamento de Economía y Gestión Forestal de la Escuela Técnica Superior de Ingenieros de Montes de la Universidad Politécnica de Madrid propone el uso de plataformas Web 2.0 con el objeto de desarrollar competencias tradicionales y competencias 2.0. Estas plataformas tienen una gran acogida entre el alumnado, presentan utilidad tanto en el presente como en el futuro, y se puede utilizar como plataforma de Learning 2.0 de la Economía y Organización de Empresa
Form factors of boundary fields for A(2)-affine Toda field theory
In this paper we carry out the boundary form factor program for the
A(2)-affine Toda field theory at the self-dual point. The latter is an
integrable model consisting of a pair of particles which are conjugated to each
other and possessing two bound states resulting from the scattering processes 1
+1 -> 2 and 2+2-> 1. We obtain solutions up to four particle form factors for
two families of fields which can be identified with spinless and spin-1 fields
of the bulk theory. Previously known as well as new bulk form factor solutions
are obtained as a particular limit of ours. Minimal solutions of the boundary
form factor equations for all A(n)-affine Toda field theories are given, which
will serve as starting point for a generalisation of our results to higher rank
algebras.Comment: 24 pages LaTeX, 1 figur
- …