486 research outputs found

    Rank one discrete valuations of power series fields

    Get PDF
    In this paper we study the rank one discrete valuations of the field k((X1,...,Xn))k((X_1,..., X_n)) whose center in k\lcor\X\rcor is the maximal ideal. In sections 2 to 6 we give a construction of a system of parametric equations describing such valuations. This amounts to finding a parameter and a field of coefficients. We devote section 2 to finding an element of value 1, that is, a parameter. The field of coefficients is the residue field of the valuation, and it is given in section 5. The constructions given in these sections are not effective in the general case, because we need either to use the Zorn's lemma or to know explicitly a section σ\sigma of the natural homomorphism R_v\to\d between the ring and the residue field of the valuation vv. However, as a consequence of this construction, in section 7, we prove that k((\X)) can be embedded into a field L((\Y)), where LL is an algebraic extension of kk and the {\em ``extended valuation'' is as close as possible to the usual order function}

    Key polynomials for simple extensions of valued fields

    Full text link
    Let ι:KLK(x)\iota:K\hookrightarrow L\cong K(x) be a simple transcendental extension of valued fields, where KK is equipped with a valuation ν\nu of rank 1. That is, we assume given a rank 1 valuation ν\nu of KK and its extension ν\nu' to LL. Let (Rν,Mν,kν)(R_\nu,M_\nu,k_\nu) denote the valuation ring of ν\nu. The purpose of this paper is to present a refined version of MacLane's theory of key polynomials, similar to those considered by M. Vaqui\'e, and reminiscent of related objects studied by Abhyankar and Moh (approximate roots) and T.C. Kuo. Namely, we associate to ι\iota a countable well ordered set Q={Qi}iΛK[x]; \mathbf{Q}=\{Q_i\}_{i\in\Lambda}\subset K[x]; the QiQ_i are called {\bf key polynomials}. Key polynomials QiQ_i which have no immediate predecessor are called {\bf limit key polynomials}. Let βi=ν(Qi)\beta_i=\nu'(Q_i). We give an explicit description of the limit key polynomials (which may be viewed as a generalization of the Artin--Schreier polynomials). We also give an upper bound on the order type of the set of key polynomials. Namely, we show that if char kν=0\operatorname{char}\ k_\nu=0 then the set of key polynomials has order type at most ω\omega, while in the case char kν=p>0\operatorname{char}\ k_\nu=p>0 this order type is bounded above by ω×ω\omega\times\omega, where ω\omega stands for the first infinite ordinal.Comment: arXiv admin note: substantial text overlap with arXiv:math/060519

    Web 2.0 en el proceso de enseñanza-aprendizaje. Aplicación a la enseñanza de Economía de la Empresa

    Get PDF
    El uso de Internet y su evolución acelerada en el tiempo no afecta exclusivamente a las empresas, sino que su ritmo viene marcado precisamente por los que se han de considerar nuevos productores de contenido en la Red. La Universidad no puede quedarse atrás en el uso de las TIC pero tampoco puede centrarse exclusivamente en plataformas de aprendizaje on-line de sofisticación elevada –OCW, Moodle, entre otros-, pero sin otorgar poder para modificar y generar contenidos a los usuarios. La Unidad Docente de Organización de Empresas del Departamento de Economía y Gestión Forestal de la Escuela Técnica Superior de Ingenieros de Montes de la Universidad Politécnica de Madrid propone el uso de plataformas Web 2.0 con el objeto de desarrollar competencias tradicionales y competencias 2.0. Estas plataformas tienen una gran acogida entre el alumnado, presentan utilidad tanto en el presente como en el futuro, y se puede utilizar como plataforma de Learning 2.0 de la Economía y Organización de Empresa

    Form factors of boundary fields for A(2)-affine Toda field theory

    Get PDF
    In this paper we carry out the boundary form factor program for the A(2)-affine Toda field theory at the self-dual point. The latter is an integrable model consisting of a pair of particles which are conjugated to each other and possessing two bound states resulting from the scattering processes 1 +1 -> 2 and 2+2-> 1. We obtain solutions up to four particle form factors for two families of fields which can be identified with spinless and spin-1 fields of the bulk theory. Previously known as well as new bulk form factor solutions are obtained as a particular limit of ours. Minimal solutions of the boundary form factor equations for all A(n)-affine Toda field theories are given, which will serve as starting point for a generalisation of our results to higher rank algebras.Comment: 24 pages LaTeX, 1 figur
    corecore