27 research outputs found
Cellularity Description of Adipose Depots in Domesticated Animals
Cellularity of adipose tissue in domesticated animals varies not only with species, sex, age and management conditions but also with depot. Differences in depots are important in animal production because of the economic and welfare implications and in humans in relation to obesity. The final amount of fat and its composition depends on the differentiation of mesenchymal multipotent precursor cells into mature adipocytes (adipogenesis) capable of fatty acid and triglyceride synthesis (lipogenesis), both processes being regulated by different key adipogenic and lipogenic genes, some of are well known and have been described. Histologically, differences can be classified as hyperplasia (an increase in adipocyte number) and hypertrophy (an increase in adipocyte size), processes that can produce adipocyte size distributions that are not necessarily Gaussian. A detailed description of the type of adipocyte size distribution can help distinguish the different adipocyte populations within depots and characterise each not only in terms of the size but also the number of the constituting cells. This description can help better understand the development and role of the different depots. It can also help when analysing causal relationships with adipogenic drivers and lipogenic enzymes involved in lipid metabolism
Insights into the role of major bioactive dietary nutrients in lamb meat quality: a review
Feed supplementation with α-linolenic acid (ALA) and linoleic acid (LA) increases their content in muscle, ALA increases n-3 polyunsaturated fatty acids and decrease n-6/n-3 ratio in muscle, and LA increases rumenic acid. However, high LA supplementation may have negative effects on lambsâ lipid oxidative stability of meat. When the sources of ALA and LA are fed as fresh forage, the negative effects are counterbalanced by the presence of other bioactive compounds, as vitamin E (mainly α-tocopherol) and polyphenols, which delay the lipid oxidation in meat. There is a wide consensus on the capability of vitamin E delaying lipid oxidation on lamb meat, and its feed content should be adjusted to the length of supplementation. A high dietary inclusion of proanthocyanidins, phenolic compounds and terpenes reduce the lipid oxidation in muscle and may improve the shelf life of meat, probably as a result of a combined effect with dietary vitamin E. However, the recommended dietary inclusion levels depend on the polyphenol type and concentration and antioxidant capacity of the feedstuffs, which cannot be compared easily because no routine analytical grading methods are yet available. Unless phenolic compounds content in dietary ingredients/supplements for lambs are reported, no specific association with animal physiology responses may be established.This review was funded by Ministry of Science, Innovation and Universities of Spain (Grant numbers: INIA RTA2017â00008-C02â01 and â 02), and the Technology Transfer Operation of the Rural Development Program of Catalonia 2014â2020 (Government of Catalonia and the European Regional Development Funds, Grant code 01.02.01)
Predicting beef carcass fatness using an image analysis system
The amount and distribution of subcutaneous fat is an important factor affecting beef carcass quality. The degree of fatness is determined by visual assessments scored on a scale of five fatness levels (the SEUROP system). New technologies such as the image analysis method have been developed and applied in an effort to enhance the accuracy and objectivity of this classification system. In this study, 50 young bulls were slaughtered (570 ± 52.5 kg) and after slaughter the carcasses were weighed (360 ± 33.1 kg) and a SEUROP system fatness score assigned. A digital picture of the outer surface of the left side of the carcass was taken and the area of fat cover (fat area) was measured using an image analysis system. Commercial cutting of the carcasses was performed 24 h post-mortem. The fat trimmed away on cutting (cutting fat) was weighed. A regression analysis was carried out for the carcass cutting fat (y-axis) on the carcass fat area (x-axis) to establish the accuracy of the image analysis system. A greater accuracy was obtained by the image analysis (R2 = 0.72; p 0.001). These results show the image analysis to be more accurate than the visual assessment system for predicting beef carcass fatness
Adipose tissue modification through feeding strategies and their implication on adipogenesis and adipose tissue metabolism in ruminants
Dietary recommendations by health authorities have been advising of the importance of diminishing saturated fatty acids (SFA) consumption and replacing them by polyunsaturated fatty acids (PUFA), particularly omega-3. Therefore, there have been efforts to enhance food fatty acid profiles, helping them to meet human nutritional recommendations. Ruminant meat is the major dietary conjugated linoleic acid (CLA) source, but it also contains SFA at relatively high proportions, deriving from ruminal biohydrogenation of PUFA. Additionally, lipid metabolism in ruminants may differ from other species. Recent research has aimed to modify the fatty acid profile of meat, and other animal products. This review summarizes dietary strategies based on the n-3 PUFA supplementation of ruminant diets and their effects on meat fatty acid composition. Additionally, the role of n-3 PUFA in adipose tissue (AT) development and in the expression of key genes involved in adipogenesis and lipid metabolism is discussed. It has been demonstrated that linseed supplementation leads to an increase in alpha-linolenic acid (ALA) and eicosapentaenoic acid (EPA), but not in docosahexaenoic acid (DHA), whilst fish oil and algae increase DHA content. Dietary PUFA can alter AT adiposity and modulate lipid metabolism genes expression, although further research is required to clarify the underlying mechanism.This research was funded by IS-FOOD Institute (Universidad PĂșblica de Navarra)
Novel Variant in the CNNM2 Gene Associated with Dominant Hypomagnesemia
The maintenance of magnesium (Mg2+) homeostasis is essential for human life. The Cystathionine-beta-synthase (CBS)-pair domain divalent metal cation transport mediators (CNNMs) have been described to be involved in maintaining Mg2+ homeostasis. Among these CNNMs, CNNM2 is expressed in the basolateral membrane of the kidney tubules where it is involved in Mg2+ reabsorption. A total of four patients, two of them with a suspected disorder of calcium metabolism, and two patients with a clinical diagnosis of primary tubulopathy were screened for mutations by Next-Generation Sequencing (NGS). We found one novel likely pathogenic variant in the heterozygous state (c.2384C>A; p.(Ser795*)) in theCNNM2gene in a family with a suspected disorder of calcium metabolism. In this family, hypomagnesemia was indirectly discovered. Moreover, we observed three novel variants of uncertain significance in heterozygous state in the other three patients (c.557G>C; p.(Ser186Thr), c.778A>T; p.(Ile260Phe), and c.1003G>A; p.(Asp335Asn)). Our study shows the utility of Next-Generation Sequencing in unravelling the genetic origin of rare diseases. In clinical practice, serum Mg2+ should be determined in calcium and PTH-related disorders.This study was supported by three grants from the Department of Health (2017111014, 2018111097 and 2019111052) and one grant from the Department of Education (IT1281-19) of the Basque Government. This work is generated within the Endocrine European Reference Network (Project ID number of Endo-ERN: 739527). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript