56 research outputs found

    Mechatronic Design, Dynamics, Controls, and Metrology of a Long-Stroke Linear Nano-Positioner

    Get PDF
    Precision motion systems find a broad range of application in various fields such as micro/nano machining tools, lithography scanners, testing and metrology machines, micro-assembly, biotechnology, optics manufacturing, magnetic data-storage, and optical disk drives. In this thesis, an ultraprecision motion stage (nano-positioner) is designed and built based on the concept of a low-cost desktop precision micro machine tool. Linear positioning performance requirements of such a machine tool are used as design objectives. The nano-positioner’s mechatronic design is carried out in such a way to integrate different components towards high performance in terms of high dynamic range, high feedrate, servo accuracy, and geometric accuracy. A self-aligning air-bearing/bushing arrangement is employed for frictionless motion with infinite theoretical resolution, as well as reduced assembly costs and footprint. The air discharge from the air bearings/bushings are also utilized for assistance in the removal of heat dissipated from actuator coils. A voice coil actuator (VCA) is chosen for continuous, non-contact operation, and designed from scratch. A number of dimensional variables of the cylindrical VCA are set according to required forces, motion range, production/assembly tolerances, magnet availability, leakage flux, etc. The remainder of variables is determined according to two novel optimization objectives defined independent of the coil wire gauge, which separately aim for maximum stage acceleration capacity and minimum heat generation per generated force. The actuators are operated in a complementary double configuration for control simplicity which allows for a straightforward and robust design for controller stability. Controller design is carried out at current control and position control levels. Current frequency response of the voice coil actuators is obtained, and they are observed to possess additional high frequency dynamics on top of the expected first order lumped resistance and inductance model. These are attributed to the eddy currents in the stator structure. A closed loop bandwidth of better than 907 [Hz] is achieved using the integrator plus lead current controller. The position controller is designed using the identified overall plant which includes the moving body, current dynamics and the force response. The lead-lag position controller is tuned at 450 [Hz] cross-over frequency and 40 [deg] phase margin. The control error during the tracking of a step trajectory filtered at 40 [Hz] is found to vary between ±5 [nm], indicating a 4 million dynamic range over the 20 [mm] stroke length. Dynamic Error Budgeting (DEB) method has been used to resolve the components of the error, and the largest contributor is found to be the sensor noise. The actual positioning error, which is an ideal signal excluding sensor noise is estimated using the same methodology and disturbance models, and it is found to be 0.680 [nm] root-mean-square (RMS). For the trajectory following case, experiments are carried out with and without a compensation scheme for encoder quadrature detection errors. The compensation is observed to reduce the ±45 [nm] control error to ±15 [nm]. For the assessment of stage performance and the verification of design choices, modal testing and laser interferometric metrology have been applied to the linear nano-positioner. For modal testing, two independent methods are used and their predictions are compared. In the first method, a graphical approach, namely the peak-picking method, is employed to identify modal parameters (natural frequency and damping ratio) and mode shapes. In the second method, a modal testing software package is used to identify the same using automated algorithms. The first mode, which is the most critical one for controller design, is identified at 65 [Hz] as a roll mode, followed by horizontal, vertical, and pitch modes at 450, 484, and 960 [Hz], respectively. The geometric errors of the system are identified using laser interferometric measurements, using various optical setups for linear and angular components. An error budget is formed using these results, together with the estimated thermal errors and servo errors. The accuracy of the stage is determined to be ±5.0 [μm], which had a ±1.1 [μm] non-repeatable component. In the future, the controller structure can be enhanced with an additional pole beyond the crossover frequency, in order to suppress unnecessary oscillations of the control effort signal around the set point due to the encoder noise transmitted to the controller input. Using an estimation of air bearing pitch stiffness from the catalogue values for normal stiffness, the roll mode was predicted at 672 [Hz]. The much lower natural frequency for that mode identified in modal testing (65 [Hz]) can be attributed to the shortcomings of the estimation method, primarily the neglect of the distortion of the supporting air cushion at the bearing interface due to out of plane rotations. In the future, experimental data can be obtained to characterize the air bearing pitch stiffness more accurately. It was observed that the preferred compensation scheme for the encoder quadrature detection errors is unable to match third and fourth harmonics of the encoder measurement error sufficiently. In the future, better compensation methods can be investigated for an improved match. During laser interferometric measurements, measurement uncertainty due to laser beam misalignment and air turbulence were inferred to be high. In the future, better ways to align the laser with the optics, as well as methods for improved assessment and compensation of environmental effects can be investigated

    Increased mean platelet volume in type 2 diabetes mellitus

    Get PDF
    Objective: Platelet functions have important roles in the development of vascular complications in diabetic patients. Platelets with increased volume have increased activity compared to smaller ones; therefore, mean platelet volume (MPV) is used as a marker for platelet activity. In the present study, we evaluated MPV in patients with type II diabetes mellitus (DM) and its associations with diabetic microvascular and macrovascular complications. Methods: Consecutive type II diabetic patients were screened from outpatient clinic of Internal Medicine Department of Diskapı Yıldırım Beyazıt Education and Researsch Hospital, Ankara, Turkey. A total of 48 patients with type II DM and 30 age and gender matched healthy subjects constituted the study population. For all subjects a complete blood count including MPV, fasting blood glucose level and lipid parameters were studied. In diabetic patients, duration of diabetes and HbA1C level, presence of microvascular and macrovascular complications were noted additively. Mean platelet volume was compared between diabetic patients and healthy counterparents. Then, among diabetic patients, MPV was compared between the ones with and without microvascular and macrovascular complications. Results: Mean platelet volume was found significantly higher in diabetic patients compared to non-diabetic healthy subjects. Diabetic patients with at least one of the microvascular complications had significantly higher MPV than those without microvascular damage.Higher MPV levels have also been shown in diabetics with macrovascular complications compared to the ones without macrovascular disease. Conclusion: Mean platelet volume was found to be higher in type II diabetics and those having any of microvascular or macrovascular diabetic complications

    Mechatronic design, actuator optimization, and control of a long stroke linear nano-positioner

    Get PDF
    The final publication is available at Elsevier via https://dx.doi.org/10.1016/j.precisioneng.2018.01.007 © 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/In this paper, mechatronic design, actuator optimization and controls of a long-stroke (20 mm) linear nano-positioner are presented. The mechatronic design is described in terms of the stage's most prominent features regarding mechanical design, assembly, actuator configuration, and power supply. A novel air-bearing/bushing arrangement has been used in which the commonly employed double shaft arrangement is replaced with a single shaft supported by an air bearing from the bottom to constrain the roll motion. The assembly is greatly simplified by exploiting the self-aligning property of the air-bushings which are held in the housings by O-rings. Also, the footprint of the stage is reduced. Voice coil actuators (VCA) in moving magnet mode have been used in complementary double configuration for uniformity of force response. The performance objectives of previously optimized VCA's as standalone actuators are re-evaluated in this configuration. It is observed that while the performance objectives decrease a bit, the desirability of the design point is still retained. Controller design has been made for the current control and position control loops. Heydemann's method for the compensation of encoder quadrature detection errors is implemented. The positioning resolution of the stage as measured from the sensor output is experimentally determined to be +/-5 nm. Dynamic Error Budgeting (DEB) method has been used to analyze the contributing factors to the positioning error, and sensor broadband noise is determined to be the major contributor. The actual positioning accuracy of the stage is estimated by DEB to be 0.682 nm root-mean-square (RMS). The trajectory following accuracy is determined to be +/-15 nm. It is expected that trajectory following accuracy can substantially improve if more advanced compensation methods for encoder quadrature errors are implemented.Natural Sciences and Engineering Research Council of Canada [RGPIN-03879]Engage grant EGP [436910-12

    Anxiety levels of healthcare personnel in different stages of COVID-19 pandemic: A nationwide study from Turkey

    Get PDF
    Aim: SARS CoV-2 transmission in healthcare personnel was first reported on January 20, 2020. The aim of this study was to evaluate the anxiety levels experienced by healthcare personnel in Turkey during the COVID-19 pandemic and the factors affecting these levels.Material and Methods: A survey investigating sociodemographic features and examining anxiety levels was conducted among approximately 1000 healthcare personnel who were expected to take active roles in the pandemic across Turkey. The survey was conducted in three stages: before the pandemic spread to Turkey, at the beginning of the pandemic and when the pandemic became prominent. A logistic regression analysis was performed to determine the factors affecting anxiety and predictors of anxiety levels.Results: In the first survey, always (odds ratio, 15.781; p<0.01) and often (odds ratio, 5.365; p<0.05) media use, in the second survey media use (p<0.05) and profession (odds ratio, 0.021; p<0.05) and in the third survey, marital status (odds ratio, 17.716; p<0.01) and gender (odds ratio, 4.431; p<0.05) were determined as the predictors of anxiety related to COVID-19.Discussion: As a result of this study, healthcare personnel groups were defined (women, nurses, married people) who need special intervention and support to provide spiritual comfort when working on the front line in the fight against COVID-19. Further comprehensive studies are needed of the extent of psychological support required by healthcare personnel and to whom and how this support should be provided

    Is there a link between pre-existing antibodies acquired due to childhood vaccinations or past infections and COVID-19? A case control study

    Get PDF
    Background: There is growing evidence indicating that children are less affected from COVID-19. Some authors speculate that childhood vaccinations may provide some cross-protection against COVID-19. In this study, our aim was to compare the circulating antibody titers for multiple childhood vaccine antigens, as an indicator of the state of immune memory between patients with COVID-19 and healthy controls, with a specific aim to identify the association between disease severity and antibody titrations which may indicate a protective function related to vaccine or disease induced memory. Methods: This study is a case-control study including 53 patients with COVID-19 and 40 healthy volunteers. COVID-19 severity was divided into three groups: asymptomatic, mild and severe. We measured the same set of antibody titers for vaccine antigens, and a set of biochemical and infection markers, in both the case and control groups. Results: Rubella (p = 0.003), pneumococcus (p = 0.002), and Bordetella pertussis (p 0.0001) titers were found to be significantly lower in the case group than the control group. There was a significant decline in pneumococcus titers with severity of disease (p = 0.021) and a significant association with disease severity for Bordetella pertussis titers (p = 0.014) among COVID patients. Levels of AST, procalcitonin, ferritin and D-dimer significantly increased with the disease severity Discussion: Our study supports the hypothesis that pre-existing immune memory, as monitored using circulating antibodies, acquired from childhood vaccinations, or past infections confer some protection against COVID-19. Randomized controlled studies are needed to support a definitive conclusion. © 2021 PeerJ Inc.. All rights reserved

    Kilitlenme önleyici fren sistemi (ABS) için kayma kipinde kontrol algoritması geliştirilmesi.

    No full text
    In this thesis, a sliding mode controller employing a new sliding surface for antilock brake system (ABS) is proposed, its stability is proven formally and its performance is compared with existing sliding mode controllers. The new sliding mode controller uses the integral-derivative surface, which includes error, its derivative and its integral, all at the same time. This and the already existing derivative surface, which includes error and its derivative only, are named zerothorder sliding surfaces. Their stability analysis is done using first-order auxiliary surfaces. Auxiliary surfaces equal the sliding surfaces when derivative of the error becomes zero. The first-order error surface, which includes only the error, and the integral surface, which includes error and its integral, were also designed for comparison. During design, tire brake force response is modelled as an uncertainty. Controllers are simulated on a road with an abrupt change in road coefficient of adhesion. Controller parameters used are optimized, which results in comparable stopping distances while braking on a constant coefficient of adhesion road. Effect of first order actuator dynamics with varying time constants and actuator absolute time delay were considered. Reaching and sliding properties of controllers were also investigated, using results on a constant coefficient of adhesion road. It is observed that zeroth-order sliding surfaces give smoother response for both derivative and integral-derivative cases. As the controllers employing error and derivative surfaces get unstable in the presence of actuator time delay, the integral-derivative surface, proposed in this study, stands as the best controller.M.S. - Master of Scienc
    corecore