18 research outputs found

    COVID-19 vaccine effectiveness against hospitalisation and death of people in clinical risk groups during the Delta variant period: English primary care network cohort study.

    Get PDF
    BACKGROUND: COVID-19 vaccines have been shown to be highly effective against hospitalisation and death following COVID-19 infection. COVID-19 vaccine effectiveness estimates against severe endpoints among individuals with clinical conditions that place them at increased risk of critical disease are limited. METHODS: We used English primary care medical record data from the Oxford-Royal College of General Practitioners Research and Surveillance Centre sentinel network (N > 18 million). Data were linked to the National Immunisation Management Service database, Second Generation Surveillance System for virology test data, Hospital Episode Statistics, and death registry data. We estimated adjusted vaccine effectiveness (aVE) against COVID-19 infection followed by hospitalisation and death among individuals in specific clinical risk groups using a cohort design during the delta-dominant period. We also report mortality statistics and results from our antibody surveillance in this population. FINDINGS: aVE against severe endpoints was high, 14-69d following a third dose aVE was 96.4% (95.1%-97.4%) and 97.9% (97.2%-98.4%) for clinically vulnerable people given a Vaxzevria and Comirnaty primary course respectively. Lower aVE was observed in the immunosuppressed group: 88.6% (79.1%-93.8%) and 91.9% (85.9%-95.4%) for Vaxzevria and Comirnaty respectively. Antibody levels were significantly lower among the immunosuppressed group than those not in this risk group across all vaccination types and doses. The standardised case fatality rate within 28 days of a positive test was 3.9/1000 in people not in risk groups, compared to 12.8/1000 in clinical risk groups. Waning aVE with time since 2nd dose was also demonstrated, for example, Comirnaty aVE against hospitalisation reduced from 96.0% (95.1-96.7%) 14-69days post-dose 2-82.9% (81.4-84.2%) 182days+ post-dose 2. INTERPRETATION: In all clinical risk groups high levels of vaccine effectiveness against severe endpoints were seen. Reduced vaccine effectiveness was noted among the immunosuppressed group

    Influenza and Respiratory Virus Surveillance, Vaccine Uptake, and Effectiveness at a Time of Cocirculating COVID-19: Protocol for the English Primary Care Sentinel System for 2020-2021

    Get PDF
    BackgroundThe Oxford-Royal College of General Practitioners (RCGP) Research and Surveillance Centre (RSC) and Public Health England (PHE) are commencing their 54th season of collaboration at a time when SARS-CoV-2 infections are likely to be cocirculating with the usual winter infections.ObjectiveThe aim of this study is to conduct surveillance of influenza and other monitored respiratory conditions and to report on vaccine uptake and effectiveness using nationally representative surveillance data extracted from primary care computerized medical records systems. We also aim to have general practices collect virology and serology specimens and to participate in trials and other interventional research.MethodsThe RCGP RSC network comprises over 1700 general practices in England and Wales. We will extract pseudonymized data twice weekly and are migrating to a system of daily extracts. First, we will collect pseudonymized, routine, coded clinical data for the surveillance of monitored and unexpected conditions; data on vaccine exposure and adverse events of interest; and data on approved research study outcomes. Second, we will provide dashboards to give general practices feedback about levels of care and data quality, as compared to other network practices. We will focus on collecting data on influenza-like illness, upper and lower respiratory tract infections, and suspected COVID-19. Third, approximately 300 practices will participate in the 2020-2021 virology and serology surveillance; this will include responsive surveillance and long-term follow-up of previous SARS-CoV-2 infections. Fourth, member practices will be able to recruit volunteer patients to trials, including early interventions to improve COVID-19 outcomes and point-of-care testing. Lastly, the legal basis for our surveillance with PHE is Regulation 3 of the Health Service (Control of Patient Information) Regulations 2002; other studies require appropriate ethical approval.ResultsThe RCGP RSC network has tripled in size; there were previously 100 virology practices and 500 practices overall in the network and we now have 322 and 1724, respectively. The Oxford-RCGP Clinical Informatics Digital Hub (ORCHID) secure networks enable the daily analysis of the extended network; currently, 1076 practices are uploaded. We are implementing a central swab distribution system for patients self-swabbing at home in addition to in-practice sampling. We have converted all our primary care coding to Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT) coding. Throughout spring and summer 2020, the network has continued to collect specimens in preparation for the winter or for any second wave of COVID-19 cases. We have collected 5404 swabs and detected 623 cases of COVID-19 through extended virological sampling, and 19,341 samples have been collected for serology. This shows our preparedness for the winter season.ConclusionsThe COVID-19 pandemic has been associated with a groundswell of general practices joining our network. It has also created a permissive environment in which we have developed the capacity and capability of the national primary care surveillance systems and our unique public health institute, the RCGP and University of Oxford collaboration

    Using an ontology to facilitate more accurate coding of social prescriptions addressing social determinants of health:feasibility study

    No full text
    Background: National Health Service (NHS) England supports social prescribing in order to address social determinants of health, which account for approximately 80% of all health outcomes. Nevertheless, data on ongoing social prescribing activities are lacking. Although NHS England has attempted to overcome this problem by recommending 3 standardized primary care codes, these codes do not capture the social prescribing activity to a level of granularity that would allow for fair attribution of outcomes to social prescribing. Objective: In this study, we explored whether an alternative approach to coding social prescribing activity, specifically through a social prescribing ontology, can be used to capture the social prescriptions used in primary care in greater detail. Methods: The social prescribing ontology, implemented according to the Web Ontology Language, was designed to cover several key concepts encompassing social determinants of health. Readv2 and Clinical Terms Version 3 codes were identified using the NHS Terms Browser. The Royal College of General Practitioners Research Surveillance Centre, a sentinel network of over 1000 primary care practices across England covering a population of more than 4,000,000 registered patients, was used for data analyses for a defined period (ie, January 2011 to December 2019). Results: In all, 668 codes capturing social prescriptions addressing different social determinants of health were identified for the social prescribing ontology. For the study period, social prescribing ontology codes were used 5,504,037 times by primary care practices of the Royal College of General Practitioners Research Surveillance Centre as compared to 29,606 instances of use of social prescribing codes, including NHS England’s recommended codes. Conclusions: A social prescribing ontology provides a powerful alternative to the codes currently recommended by NHS England to capture detailed social prescribing activity in England. The more detailed information thus obtained will allow for explorations about whether outputs or outcomes of care delivery can be attributed to social prescriptions, which is essential for demonstrating the overall value that social prescribing can deliver to the NHS and health care systems

    Assessing the clinical and socioeconomic burden of respiratory syncytial virus in children aged under 5 years in primary care: protocol for a prospective cohort study in England and report on the adaptations of the study to the COVID-19 pandemic

    No full text
    Background: Respiratory syncytial virus (RSV) commonly causes lower respiratory tract infections and hospitalization in children. In 2019-2020, the Europe-wide RSV ComNet standardized study protocol was developed to measure the clinical and socioeconomic disease burden of RSV infections among children aged <5 years in primary care. RSV has a recognized seasonality in England. Objective: We aimed to describe (1) the adaptations of the RSV ComNet standardized study protocol for England and (2) the challenges of conducting the study during the COVID-19 pandemic. Methods: This study was conducted by the Oxford-Royal College of General Practitioners Research and Surveillance Centre—the English national primary care sentinel network. We invited all (N=248) general practices within the network that undertook virology sampling to participate in the study by recruiting eligible patients (registered population: n=3,056,583). Children aged <5 years with the following case definition of RSV infection were included in the study: those consulting a health care practitioner in primary care with symptoms meeting the World Health Organization’s definition of acute respiratory illness or influenza-like illness who have laboratory-confirmed RSV infection. The parents/guardians of these cases were asked to complete 2 previously validated questionnaires (14 and 30 days postsampling). A sample size of at least 100 RSV-positive cases is required to estimate the percentage of children that consult in primary care who need hospitalization. Assuming a swab positivity rate of 20% in children aged <5 years, we estimated that 500 swabs are required. We adapted our method for the pandemic by extending sampling planned for winter 2020-2021 to a rolling data collection, allowing verbal consent and introducing home swabbing because of increased web-based consultations during the COVID-19 pandemic. Results: The preliminary results of the data collection between International Organization for Standardization (ISO) weeks 1-41 in 2021 are described. There was no RSV detected in the winter of 2020-2021 through the study. The first positive RSV swab collected through the sentinel network in England was collected in ISO week 17 and then every week since ISO week 25. In total, 16 (N=248, 6.5%) of the virology-sampling practices volunteered to participate; these were high-sampling practices collecting the majority of eligible swabs across the sentinel network—200 (43.8%) out of 457 swabs, of which 54 (N=200, 27%) were positive for RSV. Conclusions: Measures to control the COVID-19 pandemic meant there was no circulating RSV last winter; however, RSV has circulated out of season, as detected by the sentinel network. The sentinel network practices have collected 40% (200/500) of the required samples, and 27% (54/200) were RSV positive. We have demonstrated the feasibility of implementing a European-standardized RSV disease burden study protocol in England during a pandemic, and we now need to recruit to this adapted protocol. International Registered Report Identifier (IRRID): DERR1-10.2196/3802

    Assessing the clinical and socioeconomic burden of respiratory syncytial virus in children aged under 5 years in primary care: protocol for a prospective cohort study in England and report on the adaptations of the study to the COVID-19 pandemic.

    No full text
    Background Respiratory syncytial virus (RSV) commonly causes lower respiratory tract infections and hospitalization in children. In 2019-2020, the Europe-wide RSV ComNet standardized study protocol was developed to measure the clinical and socioeconomic disease burden of RSV infections among children aged <5 years in primary care. RSV has a recognized seasonality in England. Objective We aimed to describe (1) the adaptations of the RSV ComNet standardized study protocol for England and (2) the challenges of conducting the study during the COVID-19 pandemic. Methods This study was conducted by the Oxford-Royal College of General Practitioners Research and Surveillance Centre-the English national primary care sentinel network. We invited all (N=248) general practices within the network that undertook virology sampling to participate in the study by recruiting eligible patients (registered population: n=3,056,583). Children aged <5 years with the following case definition of RSV infection were included in the study: those consulting a health care practitioner in primary care with symptoms meeting the World Health Organization's definition of acute respiratory illness or influenza-like illness who have laboratory-confirmed RSV infection. The parents/guardians of these cases were asked to complete 2 previously validated questionnaires (14 and 30 days postsampling). A sample size of at least 100 RSV-positive cases is required to estimate the percentage of children that consult in primary care who need hospitalization. Assuming a swab positivity rate of 20% in children aged <5 years, we estimated that 500 swabs are required. We adapted our method for the pandemic by extending sampling planned for winter 2020-2021 to a rolling data collection, allowing verbal consent and introducing home swabbing because of increased web-based consultations during the COVID-19 pandemic. Results The preliminary results of the data collection between International Organization for Standardization (ISO) weeks 1-41 in 2021 are described. There was no RSV detected in the winter of 2020-2021 through the study. The first positive RSV swab collected through the sentinel network in England was collected in ISO week 17 and then every week since ISO week 25. In total, 16 (N=248, 6.5%) of the virology-sampling practices volunteered to participate; these were high-sampling practices collecting the majority of eligible swabs across the sentinel network-200 (43.8%) out of 457 swabs, of which 54 (N=200, 27%) were positive for RSV. Conclusions Measures to control the COVID-19 pandemic meant there was no circulating RSV last winter; however, RSV has circulated out of season, as detected by the sentinel network. The sentinel network practices have collected 40% (200/500) of the required samples, and 27% (54/200) were RSV positive. We have demonstrated the feasibility of implementing a European-standardized RSV disease burden study protocol in England during a pandemic, and we now need to recruit to this adapted protocol

    Remote covid assessment in primary care (RECAP) risk prediction tool: derivation and real-world validation studies

    Get PDF
    AbstractBackgroundAccurate assessment of COVID-19 severity in the community is essential for best patient care and efficient use of services and requires a risk prediction score that is COVID-19 specific and adequately validated in a community setting. Following a qualitative phase to identify signs, symptoms and risk factors, we sought to develop and validate two COVID-19-specific risk prediction scores RECAP-GP (without peripheral oxygen saturation (SpO2)) and RECAP-O2 (with SpO2).MethodsProspective cohort study using multivariable logistic regression for model development. Data on signs and symptoms (model predictors) were collected on community-based patients with suspected COVID-19 via primary care electronic health records systems and linked with secondary data on hospital admission (primary outcome) within 28 days of symptom onset. Data sources: RECAP-GP: Oxford-Royal College of General Practitioners Research and Surveillance Centre (RSC) primary care practices (development), Northwest London (NWL) primary care practices, NHS COVID-19 Clinical Assessment Service (CCAS) (validation). RECAP-O2: Doctaly Assist platform (development, and validation in subsequent sample). Estimated sample size was 2,880 per model.FindingsData were available from 8,311 individuals. Observations, such SpO2, were mostly missing in NWL, RSC, and CCAS data; however, SpO2 was available for around 70% of Doctaly patients. In the final predictive models, RECAP-GP included sex, age, degree of breathlessness, temperature symptoms, and presence of hypertension (Area Under the Curve (AUC): 0.802, Validation Negative Predictive Value (NPV) of ‘low risk’ 98.8%. RECAP-O2 included age, degree of breathlessness, fatigue, and SpO2 at rest (AUC: 0.843), Validation NPV of ‘low risk’ 99.4%.InterpretationBoth RECAP models are a valid tool in the assessment of COVID-19 patients in the community. RECAP-GP can be used initially, without need for observations, to identify patients who require monitoring. If the patient is monitored at home and SpO2 is available, RECAP-O2 is useful to assess the need for further treatment escalation.Research in context panelEvidence before the studyThis study was conceived during the first COVID-19 wave in the UK (March - April 2020), as members of the research team contributed to the development of national clinical guidelines for COVID-19 management in the community and to the Oxford COVID-19 rapid review to track signs and symptoms of COVID-19 internationally. The review was carried out according to Cochrane Collaboration standards for rapid reviews and identified systematic reviews and large-scale observational studies describing the signs and symptoms of COVID-19. Evidence gathered showed worsening of COVID-19 symptoms around the 7th day of disease and challenges in identifying patients with higher likelihood of severity to increase their monitoring. To this end, tools such NEWS2 have been used in the UK to assess COVID-19 patients in primary care, but they do not capture the characteristics of COVID-19 infection and/or are not suitable for community remote assessment. Several COVID-19 risk scores have been developed. QCOVID provides a risk of mortality considering patients’ existing risk factors but does not include acute signs and symptoms. ISARIC 4C Deterioration model has been specifically developed for hospital settings. In England, the NHS has implemented the Oximetry @home strategy to monitor patients with acute COVID-19 deemed at risk (older than 64 years old or with comorbidities) by providing pulse oximeters; however, the criteria for monitoring or for escalation of care have not been validated. There is, therefore, the need to develop a risk prediction score to establish COVID-19 patients’ risk of deterioration to be used in the community for both face to face or remote consultation.Added value of this studyWe developed and validated two COVID-19 specific risk prediction scores. One to be used in the initial remote assessment of patients with acute COVID-19 to assess need for monitoring (RECAP-GP). The second one to assess the need for further treatment escalation and includes peripheral saturation of oxygen among the model predictors (RECAP-O2). To our knowledge, this is the first COVID-19 specific risk prediction score to assess and monitor COVID-19 patients’ risk of deterioration remotely. This will be a valuable resource to complement the use of oximetry in the community clinical decision-making when assessing a patient with acute COVID-19.Implications of all available evidenceTo manage pandemic waves and their demand on healthcare, acute COVID-19 patients require close monitoring in the community and prompt escalation of their treatment. Guidance available so far relies on unvalidated tools and clinician judgement to assess deterioration. COVID-19 specific community-based risk prediction scores such as RECAP may contribute to reducing the uncertainty in the assessment and monitoring of COVID-19 patients, increase safety in clinical practice and improve outcomes by facilitating appropriate treatment escalation.</jats:sec

    Remote COVID-19 Assessment in Primary Care (RECAP) risk prediction tool: derivation and real-world validation studies

    Get PDF
    BACKGROUND: Accurate assessment of COVID-19 severity in the community is essential for patient care and requires COVID-19-specific risk prediction scores adequately validated in a community setting. Following a qualitative phase to identify signs, symptoms, and risk factors, we aimed to develop and validate two COVID-19-specific risk prediction scores. Remote COVID-19 Assessment in Primary Care-General Practice score (RECAP-GP; without peripheral oxygen saturation [SpO2]) and RECAP-oxygen saturation score (RECAP-O2; with SpO2). METHODS: RECAP was a prospective cohort study that used multivariable logistic regression. Data on signs and symptoms (predictors) of disease were collected from community-based patients with suspected COVID-19 via primary care electronic health records and linked with secondary data on hospital admission (outcome) within 28 days of symptom onset. Data sources for RECAP-GP were Oxford-Royal College of General Practitioners Research and Surveillance Centre (RCGP-RSC) primary care practices (development set), northwest London primary care practices (validation set), and the NHS COVID-19 Clinical Assessment Service (CCAS; validation set). The data source for RECAP-O2 was the Doctaly Assist platform (development set and validation set in subsequent sample). The two probabilistic risk prediction models were built by backwards elimination using the development sets and validated by application to the validation datasets. Estimated sample size per model, including the development and validation sets was 2880 people. FINDINGS: Data were available from 8311 individuals. Observations, such as SpO2, were mostly missing in the northwest London, RCGP-RSC, and CCAS data; however, SpO2 was available for 1364 (70·0%) of 1948 patients who used Doctaly. In the final predictive models, RECAP-GP (n=1863) included sex (male and female), age (years), degree of breathlessness (three point scale), temperature symptoms (two point scale), and presence of hypertension (yes or no); the area under the curve was 0·80 (95% CI 0·76-0·85) and on validation the negative predictive value of a low risk designation was 99% (95% CI 98·1-99·2; 1435 of 1453). RECAP-O2 included age (years), degree of breathlessness (two point scale), fatigue (two point scale), and SpO2 at rest (as a percentage); the area under the curve was 0·84 (0·78-0·90) and on validation the negative predictive value of low risk designation was 99% (95% CI 98·9-99·7; 1176 of 1183). INTERPRETATION: Both RECAP models are valid tools to assess COVID-19 patients in the community. RECAP-GP can be used initially, without need for observations, to identify patients who require monitoring. If the patient is monitored and SpO2 is available, RECAP-O2 is useful to assess the need for treatment escalation. FUNDING: Community Jameel and the Imperial College President's Excellence Fund, the Economic and Social Research Council, UK Research and Innovation, and Health Data Research UK

    COVID-19 Surveillance in a Primary Care Sentinel Network: In-Pandemic Development of an Application Ontology

    Get PDF
    Background: Creating an ontology for coronavirus disease 2019 (COVID-19) surveillance should help ensure transparency and consistency. Ontologies formalise conceptualisations at either domain or application level. Application ontologies cross domains and are specified through testable use cases. Our use case was extension of the role of the Oxford Royal College of General Practitioners (RCGP) Research and Surveillance Centre (RSC) to monitor the current pandemic and become an in-pandemic research platform. Objective: To develop an application ontology for COVID-19 which can be deployed across the various use case domains of the Oxford- RCGP RSC research and surveillance activities. Methods: We described our domain-specific use case. The actor was the RCGP RSC sentinel network; the system the course of the COVID-19 pandemic; the outcomes the spread and effect of mitigation measures. We used our established three-step method to develop the ontology, separating ontological concept development from code mapping and data extract validation. We developed a coding system–independent COVID-19 case identification algorithm. As there were no gold standard pandemic surveillance ontologies, we conducted a rapid Delphi consensus exercise through the International Medical Informatics Association (IMIA) Primary Health Care Informatics working group and extended networks. Results: Our use case domains included primary care, public health, virology, clinical research and clinical informatics. Our ontology supported: (1) Case identification, microbiological sampling and health outcomes at both an individual practice and national level; (2) Feedback through a dashboard; (3) A national observatory, (4) Regular updates for Public Health England, and (5) Transformation of the sentinel network to be a trial platform. We have identified a total of 8,627 people with a definite COVID-19 status, 4,240 with probable, and 59,147 people with possible COVID-19, within the RCGP RSC network (N=5,056,075). Conclusions: The underpinning structure of our ontological approach has coped with multiple clinical coding challenges. At a time when there is uncertainty about international comparisons, clarity about the basis on which case definitions and outcomes are made from routine data is essential.</p

    Sociodemographic disparities in COVID-19 seroprevalence across England in the Oxford RCGP primary care sentinel network

    No full text
    Objectives To monitor changes in seroprevalence of SARS-CoV-2 antibodies in populations over time and between different demographic groups. Methods A subset of practices in the Oxford-Royal College of General Practitioners (RCGP) Research and Surveillance Centre (RSC) sentinel network provided serum samples, collected when volunteer patients had routine blood tests. We tested these samples for SARS-CoV-2 antibodies using Abbott (Chicago, USA), Roche (Basel, Switzerland) and/or Euroimmun (Luebeck, Germany) assays, and linked the results to the patients’ primary care computerised medical records. We report seropositivity by region and age group, and additionally examined the effects of gender, ethnicity, deprivation, rurality, shielding recommendation and smoking status. Results We estimated seropositivity from patients aged 18-100 years old, which ranged from 4.1% (95% CI 3.1–5.3%) to 8.9% (95% CI 7.8–10.2%) across the different assays and time periods. We found higher Euroimmun seropositivity in younger age groups, people of Black and Asian ethnicity (compared to white), major conurbations, and non-smokers. We did not observe any significant effect by region, gender, deprivation, or shielding recommendation. Conclusions Our results suggest that prior to the vaccination programme, most of the population remained unexposed to SARS-CoV-2

    The impact of primary care supported shielding on the risk of mortality in people vulnerable to COVID-19: English sentinel network matched cohort study

    No full text
    Objectives To mitigate risk of mortality from coronavirus 2019 infection (COVID-19), the UK government recommended ‘shielding’ of vulnerable people through self-isolation for 12 weeks. Methods A retrospective cohort study using a nationally representative English primary care database comparing people aged >= 40 years who were recorded as being advised to shield using a fixed ratio of 1:1, matching to people with the same diagnoses not advised to shield (n = 77,360 per group). Time-to-death was compared using Cox regression, reporting the hazard ratio (HR) of mortality between groups. A sensitivity analysis compared exact matched cohorts (n = 24,752 shielded, n = 61,566 exact matches). Results We found a time-varying HR of mortality between groups. In the first 21 days, the mortality risk in people shielding was half those not (HR = 0.50, 95%CI:0.41–0.59. p < 0.0001). Over the remaining nine weeks, mortality risk was 54% higher in the shielded group (HR=1.54, 95%CI:1.41–1.70, p < 0.0001). Beyond the shielding period, mortality risk was over two-and-a-half times higher in the shielded group (HR=2.61, 95%CI:2.38–2.87, p < 0.0001). Conclusions Shielding halved the risk of mortality for 21 days. Mortality risk became higher across the remainder of the shielding period, rising to two-and-a-half times greater post-shielding. Shielding may be beneficial in the next wave of COVID-19
    corecore