8 research outputs found

    Photoinhibition and Photoprotective Responses of a Brown Marine Macroalga Acclimated to Different Light and Nutrient Regimes

    No full text
    Plants and brown algae avoid photoinhibition (decline in photosystem II efficiency, Fv/Fm) caused by excess light energy and oxidative stress through several photoprotective mechanisms, such as antioxidant xanthophyll production and heat dissipation. The heat dissipation can be measured as non-photochemical quenching (NPQ) and is strongly driven by de-epoxidation of xanthophyll cycle pigments (XCP). Although NPQ is known to increase under high light acclimation and nutrient-deficient conditions, a few studies have investigated the combined effects of the conditions on both NPQ and associated xanthophyll-to-chlorophyll (Chl) a ratio. The present study investigated the photosynthetic parameters of the brown alga Sargassum fusiforme acclimated to three irradiance levels combined with three nutrient levels. Elevated irradiance decreased Fv/Fm but increased NPQ, XCP/Chl a ratio, and fucoxanthin/Chl a ratio, suggesting the photoprotective role of antioxidant fucoxanthin in brown algae. Reduced nutrient availability increased NPQ but had no effect on the other variables, including XCP/Chl a ratio and its de-epoxidation state. The results indicate that NPQ can be used as a sensitive stress marker for nutrient deficiency, but cannot be used to estimate XCP pool size and state

    Photoinhibition and Photoprotective Responses of a Brown Marine Macroalga Acclimated to Different Light and Nutrient Regimes

    No full text
    Plants and brown algae avoid photoinhibition (decline in photosystem II efficiency, Fv/Fm) caused by excess light energy and oxidative stress through several photoprotective mechanisms, such as antioxidant xanthophyll production and heat dissipation. The heat dissipation can be measured as non-photochemical quenching (NPQ) and is strongly driven by de-epoxidation of xanthophyll cycle pigments (XCP). Although NPQ is known to increase under high light acclimation and nutrient-deficient conditions, a few studies have investigated the combined effects of the conditions on both NPQ and associated xanthophyll-to-chlorophyll (Chl) a ratio. The present study investigated the photosynthetic parameters of the brown alga Sargassum fusiforme acclimated to three irradiance levels combined with three nutrient levels. Elevated irradiance decreased Fv/Fm but increased NPQ, XCP/Chl a ratio, and fucoxanthin/Chl a ratio, suggesting the photoprotective role of antioxidant fucoxanthin in brown algae. Reduced nutrient availability increased NPQ but had no effect on the other variables, including XCP/Chl a ratio and its de-epoxidation state. The results indicate that NPQ can be used as a sensitive stress marker for nutrient deficiency, but cannot be used to estimate XCP pool size and state

    Effects of a Detailed Vegetation Database on Simulated Meteorological Fields, Biogenic VOC Emissions, and Ambient Pollutant Concentrations over Japan

    Get PDF
    Regional air quality simulations provide powerful tools for clarifying mechanisms of heavy air pollution and for considering effective strategies for better air quality. This study introduces a new vegetation database for Japan, which could provide inputs for regional meteorological modeling, and estimating emissions of biogenic volatile organic compounds (BVOCs), both of which are essential components of simulations. It includes newly developed emission factors (EFs) of BVOCs for major vegetation types in Japan, based on existing literature. The new database contributes to improved modeling of meteorological fields due to its updated representation of larger urban areas. Using the new vegetation and EF database, lower isoprene and monoterpene, and higher sesquiterpene emissions are estimated for Japan than those derived from previously available default datasets. These slightly reduce the overestimation of ozone concentrations obtained by a regional chemical transport model, whereas their effects on underestimated secondary organic aerosol (SOA) concentrations are marginal. Further work is necessary, not only on BVOC emissions but also the other simulation components, to further improve the modeling of ozone and SOA concentrations in Japan

    Amorphous Metal Polysulfides: Electrode Materials with Unique Insertion/Extraction Reactions

    No full text
    A unique charge/discharge mechanism of amorphous TiS<sub>4</sub> is reported. Amorphous transition metal polysulfide electrodes exhibit anomalous charge/discharge performance and should have a unique charge/discharge mechanism: neither the typical intercalation/deintercalation mechanism nor the conversion-type one, but a mixture of the two. Analyzing the mechanism of such electrodes has been a challenge because fewer tools are available to examine the “amorphous” structure. It is revealed that the electrode undergoes two distinct structural changes: (i) the deformation and formation of S–S disulfide bonds and (ii) changes in the coordination number of titanium. These structural changes proceed continuously and concertedly for Li insertion/extraction. The results of this study provide a novel and unique model of amorphous electrode materials with significantly larger capacities
    corecore