84 research outputs found

    Evaluating object and region of concentric electrode in bio-electrical impedance measurement

    Get PDF
    Concentric electrode is easy to use and used widely for measuring bio-electrical impedance. But, its evaluating region was not investigated in detail. Then, the characteristics of concentric electrode were studied from various points of view. In case of use without electrode paste, impedance is determined with the contacting condition between electrode and skin surface over all frequency range. In case of use with electrode past, impedance is composed of stratum corneum in the frequency range of 20 Hz-1 kHz and is mainly composed of subcutaneous tissue in the range of 200 kHz-1 MHz. In the high frequency range, evaluating region of concentric electrode is the area less than the radius or the gap of center electrode

    母子分離ストレスが報酬探索行動に及ぼす影響と側坐核におけるドーパミンD1受容体のDNAのメチル化機構を介した発現変化について

    Get PDF
    Early-life stress has long-lasting effects on the stress response, emotions, and behavior throughout an individual’s life. Clinical reports have demonstrated that child abuse victims exhibit impairments in reward-associated behavior; yet, the mechanism for this effect remains unclear. Maternal separation (MS) or MS coupled with social isolation (SI) (MS + SI) is widely used as a model for early-life stress in rodent studies. We employed mice subjected to MS + SI to clarify the long-term effect of early-life stress on reward-seeking involving palatable foods by a conditioned place-preference (CPP) paradigm. Prior MS + SI experience decreased exploration time in a chocolate-paired compartment in adult female mice, but not in male mice. We then focused on the mesolimbic dopamine pathway associated with reward-seeking behavior and measured both mRNA and protein levels of tyrosine hydroxylase (TH) in the ventral tegmental area (VTA) and dopamine D1 and D2 receptors in the nucleus accumbens (NAc). MS + SI female mice had significantly lower D1 receptor mRNA and protein levels than controls, whereas the expression of TH and the D2 receptor was similar in the 2 groups. All mRNA and protein levels were unchanged in MS + SI male mice. When attempting to elucidate the mechanism underlying downregulation of the D1 receptor in the NAc of MS + SI females, we found hypermethylation of the Drd1a promoter region. These results suggest that early-life stress affects reward-seeking behavior in female mice, which may be associated with the downregulation of D1 receptor in the NAc via epigenetic modification of its promoter region.博士(医学)・甲第672号・平成29年6月28日Copyright © 2017 Elsevier B.V. All rights reserved

    Crry, a complement regulatory protein, modulates renal interstitial disease induced by proteinuria11See Editorial by Quigg, p. 2315

    Get PDF
    Crry, a complement regulatory protein, modulates renal interstitial disease induced by proteinuria.BackgroundRecent studies have suggested a role for urinary complement components in mediating tubulointerstitial damage, which is known to have a good correlation with progression of chronic renal diseases. Although accumulating evidence suggests that complement regulatory proteins play an important protective role in glomeruli, their role in renal tubules remains unclear. In order to establish the role of a complement regulatory protein, Crry, in renal tubular injury, we employed a molecular biological approach to block the expression of Crry in tubules of animals with proteinuria induced with puromycin aminonucleoside nephritis (PAN).Methods and ResultsTwo different antisense oligodeoxynucleotides (ODNs) against Crry were designed and applied to cultured rat mesangial cells in vitro in order to establish their efficacy. Antisense ODN treatment resulted in decreased expression of Crry protein associated with increased sensitivity to complement attack in cell lysis assays compared with control ODN treatment or no treatment (44.7, 1.50, and 1.34%, respectively). Antisense ODNs did not affect the expression of Thy1 as a control, confirming the specificity of our ODNs. In vivo, we performed selective right renal artery perfusion to administer antisense ODNs to the kidney and showed prominent uptake of ODNs by proximal tubular cells. Reduced expression of Crry protein was demonstrated in proximal tubular cells in antisense ODNs-treated kidneys. Normal rats treated with the antisense ODNs did not show any pathological changes. However, in PAN, rats with massive proteinuria showed increased deposition of C3 and C5b-9 in tubules in antisense-treated kidneys, and histological assessment revealed more severe tubulointerstitial injury in antisense-treated animals compared with controls.ConclusionThese results establish a pathogenic role for complement in leading to tubulointerstitial injury during proteinuria and, to our knowledge for the first time, show a protective role of a complement regulatory protein, Crry, in renal interstitial disease

    Elucidation of the mechanism of subunit exchange in αB crystallin oligomers

    Get PDF
    AlphaB crystallin (αB-crystallin) is a key protein for maintaining the long-term transparency of the eye lens. In the eye lens, αB-crystallin is a “dynamical” oligomer regulated by subunit exchange between the oligomers. To elucidate the unsettled mechanism of subunit exchange in αB-crystallin oligomers, the study was carried out at two different protein concentrations, 28.5 mg/mL (dense sample) and 0.45 mg/mL (dilute sample), through inverse contrast matching small-angle neutron scattering. Interestingly, the exchange rate of the dense sample was the same as that of the dilute sample. From analytical ultracentrifuge measurements, the coexistence of small molecular weight components and oligomers was detected, regardless of the protein concentration. The model proposed that subunit exchange could proceed through the assistance of monomers and other small oligomers; the key mechanism is attaching/detaching monomers and other small oligomers to/from oligomers. Moreover, this model successfully reproduced the experimental results for both dense and dilute solutions. It is concluded that the monomer and other small oligomers attaching/detaching mainly regulates the subunit exchange in αB-crystallin oligomer

    Bio-based wrinkled surfaces harnessed from biological design principles of wood and peroxidase activity

    Get PDF
    A new and simple approach for surface wrinkling inspired by polymer assemblies in wood fibers is introduced. A hard skin is synthesized on a linear polysaccharide support that resembles the structural units of the cell wall. This skin, a wood mimetic layer, is produced through immersion in a solution containing phenolic precursor and subsequent surface reaction by horseradish peroxidase. A patterned surface with micron‐scale wrinkles is formed upon drying and as a result of inhomogeneous shrinkage. We demonstrate that the design of the wrinkled surfaces can be controlled by the molecular structure of the phenolic precursor, temperature, and drying stress. It is noteworthy that this is a totally bio‐based system involving green materials and processes

    Wood-mimetic skins prepared using horseradish peroxidase catalysis to induce surface wrinkling of chitosan film upon drying

    Get PDF
    We previously developed bio-based wrinkled surfaces induced by wood-mimetic skins upon drying in which microscopic wrinkles were fabricated on a chitosan (CS) film by immersing it in a phenolic acid solution, followed by horseradish peroxidase (HRP)-catalyzed surface reaction and drying. However, the detailed structure of the resulting wood-mimetic skins, including crosslinking mode and thickness, has not been clarified due to the difficulty of the analysis. Here, we prepare wrinkled films using ferulic acid (FE), vanillic acid (VA), and homovanillic acid (HO) and characterize their structures to clarify the unknown characteristics of wood-mimetic skin. Chemical and structural analyses of wood-mimetic skins prepared using VA and HO indicate that the crosslinking structure in the skin is composed of ionic bonds between CS and an oligophenolic residue generated by the HRP-catalyzed reaction on the CS surface. Moreover, the quantity of these ionic bonds is related to the skin hardness and wrinkle size. Finally, SEM and TOF-SIMS analyses indicate that the skin thickness is on the submicron order (<200 nm)

    Prevalence of Masked Obesity Associated with Lifestyle-Related Habits, Dietary Habits, and Energy Metabolism in Japanese Young Women

    Get PDF
    We investigated the prevalence of Masked Obesity (MO) and the correlations between MO and lifestylerelated habits (e.g., exercise habits, dieting habits), dietary habits, energy metabolism, and seasons. The subjects were 131 young Japanese college students. Body composition was measured by bioelectrical impedance method and Resting Metabolic Rate (RMR) was measured by an indirect calorimeter. Subjects with a BMI in the normal range (n=110) were divided into the MO (percentage of body fat to Body Weight [BF]≥30%) and control (C) (BF&lt;30%) groups. Dietary energy and nutrient intakes were calculated from weighed dietary records. A questionnaire on lifestyle habits was obtained individually from the subjects. The percentage of MO was 32% of subjects within normal BMI. The prevalence of MO was the highest in winter, probably due to accumulation of body fat as an adaptation to cold. The MO group had low Fat-Free Mass (FFM) and high BF. RMR of the MO group was significantly lower than that of the C group. The MO group tended to have poor exercise habits, more dieting (restricting calorie intake) experiences and consumed a diet with less vegetables and beans. We concluded that the prevalence of MO was 32%; it was the highest in winter for subjects who had high fat and low FFM. This fact may be due to poor exercise, more dieting experiences and insufficient intake of vegetables and beans. Furthermore, this accumulation of body fat may be partly due to low RMR

    骨髄間葉系細胞シートはラット脊髄離断損傷後にグリア瘢痕形成を抑制し、軸索再生と後肢運動機能改善を促進する。

    Get PDF
    OBJECTIVE Transplantation of bone marrow stromal cells (BMSCs) is a theoretical potential as a therapeutic strategy in the treatment of spinal cord injury (SCI). Although a scaffold is sometimes used for retaining transplanted cells in damaged tissue, it is also known to induce redundant immunoreactions during the degradation processes. In this study, the authors prepared cell sheets made of BMSCs, which are transplantable without a scaffold, and investigated their effects on axonal regeneration, glial scar formation, and functional recovery in a completely transected SCI model in rats. METHODS BMSC sheets were prepared from the bone marrow of female Fischer 344 rats using ascorbic acid and were cryopreserved until the day of transplantation. A gelatin sponge (GS), as a control, or BMSC sheet was transplanted into a 2-mm-sized defect of the spinal cord at the T-8 level. Axonal regeneration and glial scar formation were assessed 2 and 8 weeks after transplantation by immunohistochemical analyses using anti-Tuj1 and glial fibrillary acidic protein (GFAP) antibodies, respectively. Locomotor function was evaluated using the Basso, Beattie, and Bresnahan scale. RESULTS The BMSC sheets promoted axonal regeneration at 2 weeks after transplantation, but there was no significant difference in the number of Tuj1-positive axons between the sheet- and GS-transplanted groups. At 8 weeks after transplantation, Tuj1-positive axons elongated across the sheet, and their numbers were significantly greater in the sheet group than in the GS group. The areas of GFAP-positive glial scars in the sheet group were significantly reduced compared with those of the GS group at both time points. Finally, hindlimb locomotor function was ameliorated in the sheet group at 4 and 8 weeks after transplantation. CONCLUSIONS The results of the present study indicate that an ascorbic acid-induced BMSC sheet is effective in the treatment of SCI and enables autologous transplantation without requiring a scaffold.博士(医学)・甲第656号・平成28年11月24日© Copyright 2016 American Association of Neurological SurgeonsThe definitive version is available at " http://dx.doi.org/10.3171/2016.8.SPINE16250

    Sustained activation of the unfolded protein response induces cell death in Fuchs' endothelial corneal dystrophy

    Get PDF
    Purpose: The unfolded protein response (UPR) is believed to play a role in the pathogenesis of Fuchs' endothelial corneal dystrophy (FECD). The purpose of this study was to investigate whether unfolded proteins accumulate in the corneal endothelium in FECD and if they are involved in triggering cell death. Methods: Descemet's membranes with corneal endothelial cells (CECs) were obtained during keratoplasty, and expression of aggresomes, type 1 collagen, fibronectin, and agrin was evaluated. Endoplasmic reticulum (ER) stress of immortalized human CECs from non-FECD subjects and from FECD patients (iHCEC and iFECD, respectively) were evaluated. The effect of MG132-mediated aggresome formation on the UPR and intrinsic pathway and the effect of mitochondrial damage on UPR were also examined. The effect of CHOP knockdown on the ER stress–mediated intrinsic pathway was also evaluated. Results: Aggresome formation was higher in iFECD than in iHCEC and was colocalized with type 1 collagen, fibronectin, and agrin. GRP78, phosphorylated IRE1, PERK, and CHOP showed higher activation in iFECD than in iHCEC. MG132-mediated aggresome formation upregulated ER stress sensors, the mitochondrial membrane potential drop, cytochrome c release to the cytoplasm, and activation of caspase-9 and -3. By contrast, staurosporine-mediated mitochondrial damage did not induce ER stress. Knockdown of CHOP attenuated the ER stress-induced cleavage of caspase-9, which is caused by intrinsic pathway activation. Conclusions: Excessive synthesis of extracellular matrix proteins induced unfolded protein accumulation in FECD. Prolonged ER stress–mediated cell death, occurring via the intrinsic apoptotic signaling pathway, therefore might be associated with the pathogenesis of FECD

    The Action of D-Dopachrome Tautomerase as an Adipokine in Adipocyte Lipid Metabolism

    Get PDF
    Adipose tissue is a critical exchange center for complex energy transactions involving triacylglycerol storage and release. It also has an active endocrine role, releasing various adipose-derived cytokines (adipokines) that participate in complex pathways to maintain metabolic and vascular health. Here, we found D-dopachrome tautomerase (DDT) as an adipokine secreted from human adipocytes by a proteomic approach. DDT mRNA levels in human adipocytes were negatively correlated with obesity-related clinical parameters such as BMI, and visceral and subcutaneous fat areas. Experiments using SGBS cells, a human preadipocyte cell line, revealed that DDT mRNA levels were increased in an adipocyte differentiationdependent manner and DDT was secreted from adipocytes. In DDT knockdown adipocytes differentiated from SGBS cells that were infected with the adenovirus expressing shRNA against the DDT gene, mRNA levels of genes involved in both lipolysis and lipogenesis were slightly but significantly increased. Furthermore, we investigated AMP-activated protein kinase (AMPK) signaling, which phosphorylates and inactivates enzymes involved in lipid metabolism, including hormonesensitive lipase (HSL) and acetyl-CoA carboxylase (ACC), in DDT knockdown adipocytes. The AMPK phosphorylation of HSL Ser-565 and ACC Ser-79 was inhibited in DDT knockdown cells and recovered in the cells treated with recombinant DDT (rDDT), suggesting that down-regulated DDT in adipocytes brings about a state of active lipid metabolism. Furthermore, administration of rDDT in db/db mice improved glucose intolerance and decreased serum free fatty acids levels. In the adipose tissue from rDDT-treated db/db mice, not only increased levels of HSL phosphorylated by AMPK, but also decreased levels of HSL phosphorylated by protein kinase A (PKA), which phosphorylates HSL to promote its activity, were observed. These results suggested that DDT acts on adipocytes to regulate lipid metabolism through AMPK and/or PKA pathway(s) and improves glucose intolerance caused by obesity
    corecore