3,212 research outputs found

    Synthesis and textural properties of unsupported and supported rutile (TiO2) membranes

    Get PDF
    Two approaches were postulated for improving the stability of porous texture of titania membranes: (1) retarding the phase transformation and grain growth; (2) avoiding the phase transformation. Based on the second approach, rutile membranes were made directly from a rutile sol, prepared by the precipitation of titania on SnO2 nuclei. The rutile membranes were stable up to 800 °C, with a porosity of ca. 40%, whereas normal titania membranes (starting with anatase) show very little porosity above 600 °C. Alumina substitution retards grain growth and pore growth at 850 °C for unsupported as well as supported membranes. \u

    Textural evolution and phase transformation in titania membranes: Part 2. - Supported membranes

    Get PDF
    Nanostructural evolution and phase transformation in supported and unsupported titania membranes have been studied using Raman spectroscopy, X-ray diffraction (XRD) and field-emission scanning electron microscopy (FE-SEM). Densification of unsupported membranes started at ca. 450 °C and reached more than 97% density at 600 °C, whereas the supported membranes had a density of only ca. 70–75% even at 700 °C when calcined for 8 h. At 700 °C the average crystallite size of supported and unsupported membranes was ca. 20 and 70 nm, respectively. This behaviour is primarily attributed to the decrease in the driving force for sintering due to the stress developed during the constrained sintering of a film attached to a rigid support and to the inhibition of the reorganization process within the film, resulting in lower coordination numbers in supported membranes. Supported membranes showed a higher transformation temperature (slower rate of transformation) than did the unsupported. Supported and unsupported membranes, calcined for 8 h, transformed to ca. 90% rutile (calculated from Raman spectrum) after calcination at 850 and 650 °C, respectively. This difference in phase transformation behaviour is attributed primarily to the large stress which is developed in a constrained environment owing to the negative volume change during the anatase–rutile transformation

    One-Nucleon Effective Generators of the Poincare Group derived from a Field Theory: Mass Renormalization

    Get PDF
    We start from a Lagrangian describing scalar "nucleons" and mesons which interact through a simple vertex. Okubo's method of unitary transformation is used to describe a single nucleon dressed by its meson cloud. We find an expression for the physical mass of the nucleon being correct up to second order in the coupling constant. It is then verified that this result is the same as the corresponding expression found by Feynman techniques. Finally we also express the three boost operators in terms of the physical nucleon mass. Doing so we find expressions for all the ten generators of Poincar\'e transformations for the system of one single dressed nucleon.Comment: 19 pages, no figure

    Field Strength Correlators For 2D Yang-Mills Over Riemann Surfaces

    Full text link
    The path integral computation of field strength correlation functions for two dimensional Yang-Mills theories over Riemann surfaces is studied. The calculation is carried out by abelianization, which leads to correlators that are topological. They are nontrivial as a result of the topological obstructions to the abelianization. It is shown in the large N limit on the sphere that the correlators undergo second order phase transitions at the critical point. Our results are applied to a computation of contractible Wilson loops.Comment: final version to appear in Int. Jour. Mod. Phys. A, minor corrections, added a few comments on Wilson loops and non-abelian Stokes theore

    Extrapolation Method for the No-Core Shell Model

    Full text link
    Nuclear many-body calculations are computationally demanding. An estimate of their accuracy is often hampered by the limited amount of computational resources even on present-day supercomputers. We provide an extrapolation method based on perturbation theory, so that the binding energy of a large basis-space calculation can be estimated without diagonalizing the Hamiltonian in this space. The extrapolation method is tested for 3H and 6Li nuclei. It will extend our computational abilities significantly and allow for reliable error estimates.Comment: 8 pages, 7 figures, PRC accepte

    Nonet Symmetry and Two-Body Decays of Charmed Mesons

    Full text link
    The decay of charmed mesons into pseudoscalar (P) and vector (V) mesons is studied in the context of nonet symmetry. We have found that it is badly broken in the PP channels and in the P sector of the PV channels as expected from the non-ideal mixing of the \eta and the \eta'. In the VV channels, it is also found that nonet symmetry does not describe the data well. We have found that this discrepancy cannot be attributed entirely to SU(3) breaking at the usual level of 20--30%. At least one, or both, of nonet and SU(3) symmetry must be very badly broken. The possibility of resolving the problem in the future is also discussed.Comment: 9 pages, UTAPHY-HEP-

    2D pattern evolution constrained by complex network dynamics

    Full text link
    Complex networks have established themselves along the last years as being particularly suitable and flexible for representing and modeling several complex natural and human-made systems. At the same time in which the structural intricacies of such networks are being revealed and understood, efforts have also been directed at investigating how such connectivity properties define and constrain the dynamics of systems unfolding on such structures. However, lesser attention has been focused on hybrid systems, \textit{i.e.} involving more than one type of network and/or dynamics. Because several real systems present such an organization (\textit{e.g.} the dynamics of a disease coexisting with the dynamics of the immune system), it becomes important to address such hybrid systems. The current paper investigates a specific system involving a diffusive (linear and non-linear) dynamics taking place in a regular network while interacting with a complex network of defensive agents following Erd\"os-R\'enyi and Barab\'asi-Albert graph models, whose nodes can be displaced spatially. More specifically, the complex network is expected to control, and if possible to extinguish, the diffusion of some given unwanted process (\textit{e.g.} fire, oil spilling, pest dissemination, and virus or bacteria reproduction during an infection). Two types of pattern evolution are considered: Fick and Gray-Scott. The nodes of the defensive network then interact with the diffusing patterns and communicate between themselves in order to control the spreading. The main findings include the identification of higher efficiency for the Barab\'asi-Albert control networks.Comment: 18 pages, 32 figures. A working manuscript, comments are welcome

    Quaternionic and Octonionic Spinors. A Classification

    Get PDF
    Quaternionic and octonionic realizations of Clifford algebras and spinors are classified and explicitly constructed in terms of recursive formulas. The most general free dynamics in arbitrary signature space-times for both quaternionic and octonionic spinors is presented. In the octonionic case we further provide a systematic list of results and tables expressing, e.g., the relations of the octonionic Clifford algebras with the G2G_2 cosets over the Lorentz algebras, the identities satisfied by the higher-rank antisymmetric octonionic tensors and so on. Applications of these results range from the classification of octonionic generalized supersymmetries, the construction of octonionic superstrings, as well as the investigations concerning the recently discovered octonionic MM-superalgebra and its superconformal extension.Comment: 24 pages, LaTe
    • …
    corecore