48 research outputs found

    Reactive Oxygen Species Play a Role in the Infection of the Necrotrophic Fungi, Rhizoctonia solani in Wheat

    Get PDF
    Rhizoctonia solani is a nectrotrophic fungal pathogen that causes billions of dollars of damage to agriculture worldwide and infects a broad host range including wheat, rice, potato and legumes. In this study we identify wheat genes that are differentially expressed in response to the R. solani isolate, AG8, using microarray technology. A significant number of wheat genes identified in this screen were involved in reactive oxygen species (ROS) production and redox regulation. Levels of ROS species were increased in wheat root tissue following R. solani infection as determined by Nitro Blue Tetrazolium (NBT), 3,3'-diaminobenzidine (DAB) and titanium sulphate measurements. Pathogen/ROS related genes from R. solani were also tested for expression patterns upon wheat infection. TmpL, a R. solani gene homologous to a gene associated with ROS regulation in Alternaria brassicicola, and OAH, a R. solani gene homologous to oxaloacetate acetylhydrolase which has been shown to produce oxalic acid in Sclerotinia sclerotiorum, were highly induced in R. solani when infecting wheat. We speculate that the interplay between the wheat and R. solani ROS generating proteins may be important for determining the outcome of the wheat/R. solani interaction

    Biological detoxification of the mycotoxin deoxynivalenol and its use in genetically engineered crops and feed additives

    Get PDF
    Deoxynivalenol (DON) is the major mycotoxin produced by Fusarium fungi in grains. Food and feed contaminated with DON pose a health risk to humans and livestock. The risk can be reduced by enzymatic detoxification. Complete mineralization of DON by microbial cultures has rarely been observed and the activities turned out to be unstable. The detoxification of DON by reactions targeting its epoxide group or hydroxyl on carbon 3 is more feasible. Microbial strains that de-epoxidize DON under anaerobic conditions have been isolated from animal digestive system. Feed additives claimed to de-epoxidize trichothecenes enzymatically are on the market but their efficacy has been disputed. A new detoxification pathway leading to 3-oxo-DON and 3-epi-DON was discovered in taxonomically unrelated soil bacteria from three continents; the enzymes involved remain to be identified. Arabidopsis, tobacco, wheat, barley, and rice were engineered to acetylate DON on carbon 3. In wheat expressing DON acetylation activity, the increase in resistance against Fusarium head blight was only moderate. The Tri101 gene from Fusarium sporotrichioides was used; Fusarium graminearum enzyme which possesses higher activity towards DON would presumably be a better choice. Glycosylation of trichothecenes occurs in plants, contributing to the resistance of wheat to F. graminearum infection. Marker-assisted selection based on the trichothecene-3-O-glucosyltransferase gene can be used in breeding for resistance. Fungal acetyltransferases and plant glucosyltransferases targeting carbon 3 of trichothecenes remain promising candidates for engineering resistance against Fusarium head blight. Bacterial enzymes catalyzing oxidation, epimerization, and less likely de-epoxidation of DON may extend this list in future

    Molecular techniques for pathogen identification and fungus detection in the environment

    Get PDF
    Many species of fungi can cause disease in plants, animals and humans. Accurate and robust detection and quantification of fungi is essential for diagnosis, modeling and surveillance. Also direct detection of fungi enables a deeper understanding of natural microbial communities, particularly as a great many fungi are difficult or impossible to cultivate. In the last decade, effective amplification platforms, probe development and various quantitative PCR technologies have revolutionized research on fungal detection and identification. Examples of the latest technology in fungal detection and differentiation are discussed here

    A TaqMan real-time PCR assay for Rhizoctonia cerealis and its use in wheat and soil

    Get PDF
    Rhizoctonia cerealis causes sharp eyespot in cereals and the pathogen survives as mycelia or sclerotia in soil. Real-time Polymerase Chain Reaction (qPCR) assays based on TaqMan chemistry are highly suitable for use on DNA extracted from soil. We report here the first qPCR assay for R. cerealis using TaqMan primers and a probe based on a unique Sequence Characterised Amplified Region (SCAR). The assay is highly specific and did not amplify DNA from a range of other binucleate Rhizoctonia species or isolates of anastomosis groups of Rhizoctonia solani. The high sensitivity of the assay was demonstrated in soils using a bulk DNA extraction method where 200 ÎĽg sclerotia in 50 g of soil were detected. DNA of the pathogen could also be amplified from asymptomatic wheat plants. Using the assay on soil samples from fields under different crop rotations, R. cerealis was most frequently detected in soils where wheat was grown or soil under pasture. It was detected least frequently in fields where potatoes were grown. This study demonstrates that assays derived from SCAR sequences can produce specific and sensitive qPCR assays

    The wheat HMW-glutenin 1Dy10

    No full text
    corecore