13 research outputs found

    Cortical Pathology in Vanishing White Matter

    Get PDF
    Vanishing white matter (VWM) is classified as a leukodystrophy with astrocytes as primary drivers in its pathogenesis. Magnetic resonance imaging has documented the progressive thinning of cortices in long-surviving patients. Routine histopathological analyses, however, have not yet pointed to cortical involvement in VWM. Here, we provide a comprehensive analysis of the VWM cortex. We employed high-resolution-mass-spectrometry-based proteomics and immunohistochemistry to gain insight into possible molecular disease mechanisms in the cortices of VWM patients. The proteome analysis revealed 268 differentially expressed proteins in the VWM cortices compared to the controls. A majority of these proteins formed a major protein interaction network. A subsequent gene ontology analysis identified enrichment for terms such as cellular metabolism, particularly mitochondrial activity. Importantly, some of the proteins with the most prominent changes in expression were found in astrocytes, indicating cortical astrocytic involvement. Indeed, we confirmed that VWM cortical astrocytes exhibit morphological changes and are less complex in structure than control cells. Our findings also suggest that these astrocytes are immature and not reactive. Taken together, we provide insights into cortical involvement in VWM, which has to be taken into account when developing therapeutic strategies

    Knee disorders in primary care: design and patient selection of the HONEUR knee cohort.

    Get PDF
    BACKGROUND: Knee complaints are a frequent reason for consultation in general practice. These patients constitute a specific population compared to secondary care patients. However, information to base treatment decisions on is generally derived from specialistic settings. Our cohort study is aimed at collecting knowledge about prognosis and prognostic factors of knee complaints presented in a primary care setting. This paper describes the methods used for data collection, and discusses potential selectiveness of patient recruitment. METHODS: This is a descriptive prospective cohort study with one-year follow-up. 40 Dutch GPs recruited consecutive patients with incident knee complaints aged 12 years and above from October 2001 to October 2003. Patients were assessed with questionnaires and standardised physical examinations. Additional measurements of subgroups included MRI for recent knee traumas and device assessed function measurements for non-traumatic patients. After the inclusion period we retrospectively searched the computerized medical files of participating GPs to obtain a sample to determine possible selective recruitment. We assessed differences in proportions of gender, traumatic onset of injury and age groups between participants and non-participants using Odds Ratios (OR) and 95% confidence intervals. RESULTS: We recruited 1068 patients. In a sample of 310 patients visiting the GP, we detected some selective recruitment, indicating an underrepresentation of patients aged 12 to 35 years (OR 1.70; 1.15-2.77), especially among men (OR 2.16; 1.12-4.18). The underrepresentation of patients with traumatic onset of injury was not statistically significant. CONCLUSION: This cohort is unique in its size, setting, and its range of both age and type of knee complaints. We believe the detected selective recruitment is unlikely to introduce significant bias, as the cohort will be divided into subgroups according to age group or traumatic onset of injury for future analyses. However, the underrepresentation of men in the age group of 12 to 35 years of age warrants caution. Based on the available data, we believe our cohort is an acceptable representation of patients with new knee complaints consulting the GP, and we expect no problems with extrapolation of the results to the general Dutch population

    Cortical Pathology in Vanishing White Matter

    No full text
    Vanishing white matter (VWM) is classified as a leukodystrophy with astrocytes as primary drivers in its pathogenesis. Magnetic resonance imaging has documented the progressive thinning of cortices in long-surviving patients. Routine histopathological analyses, however, have not yet pointed to cortical involvement in VWM. Here, we provide a comprehensive analysis of the VWM cortex. We employed high-resolution-mass-spectrometry-based proteomics and immunohistochemistry to gain insight into possible molecular disease mechanisms in the cortices of VWM patients. The proteome analysis revealed 268 differentially expressed proteins in the VWM cortices compared to the controls. A majority of these proteins formed a major protein interaction network. A subsequent gene ontology analysis identified enrichment for terms such as cellular metabolism, particularly mitochondrial activity. Importantly, some of the proteins with the most prominent changes in expression were found in astrocytes, indicating cortical astrocytic involvement. Indeed, we confirmed that VWM cortical astrocytes exhibit morphological changes and are less complex in structure than control cells. Our findings also suggest that these astrocytes are immature and not reactive. Taken together, we provide insights into cortical involvement in VWM, which has to be taken into account when developing therapeutic strategies

    Cortical Pathology in Vanishing White Matter

    No full text
    Vanishing white matter (VWM) is classified as a leukodystrophy with astrocytes as primary drivers in its pathogenesis. Magnetic resonance imaging has documented the progressive thinning of cortices in long-surviving patients. Routine histopathological analyses, however, have not yet pointed to cortical involvement in VWM. Here, we provide a comprehensive analysis of the VWM cortex. We employed high-resolution-mass-spectrometry-based proteomics and immunohistochemistry to gain insight into possible molecular disease mechanisms in the cortices of VWM patients. The proteome analysis revealed 268 differentially expressed proteins in the VWM cortices compared to the controls. A majority of these proteins formed a major protein interaction network. A subsequent gene ontology analysis identified enrichment for terms such as cellular metabolism, particularly mitochondrial activity. Importantly, some of the proteins with the most prominent changes in expression were found in astrocytes, indicating cortical astrocytic involvement. Indeed, we confirmed that VWM cortical astrocytes exhibit morphological changes and are less complex in structure than control cells. Our findings also suggest that these astrocytes are immature and not reactive. Taken together, we provide insights into cortical involvement in VWM, which has to be taken into account when developing therapeutic strategies

    Cortical Pathology in Vanishing White Matter

    Get PDF
    Vanishing white matter (VWM) is classified as a leukodystrophy with astrocytes as primary drivers in its pathogenesis. Magnetic resonance imaging has documented the progressive thinning of cortices in long-surviving patients. Routine histopathological analyses, however, have not yet pointed to cortical involvement in VWM. Here, we provide a comprehensive analysis of the VWM cortex. We employed high-resolution-mass-spectrometry-based proteomics and immunohistochemistry to gain insight into possible molecular disease mechanisms in the cortices of VWM patients. The proteome analysis revealed 268 differentially expressed proteins in the VWM cortices compared to the controls. A majority of these proteins formed a major protein interaction network. A subsequent gene ontology analysis identified enrichment for terms such as cellular metabolism, particularly mitochondrial activity. Importantly, some of the proteins with the most prominent changes in expression were found in astrocytes, indicating cortical astrocytic involvement. Indeed, we confirmed that VWM cortical astrocytes exhibit morphological changes and are less complex in structure than control cells. Our findings also suggest that these astrocytes are immature and not reactive. Taken together, we provide insights into cortical involvement in VWM, which has to be taken into account when developing therapeutic strategies

    Validating and updating a risk model for pneumonia - a case study

    Get PDF
    BACKGROUND: The development of risk prediction models is of increasing importance in medical research - their use in practice, however, is rare. Among other reasons this might be due to the fact that thorough validation is often lacking. This study focuses on two Bayesian approaches of how to validate a prediction rule for the diagnosis of pneumonia, and compares them with established validation methods. METHODS: Expert knowledge was used to derive a risk prediction model for pneumonia. Data on more than 600 patients presenting with cough and fever at a general practitioner's practice in Switzerland were collected in order to validate the expert model and to examine the predictive performance of it. Additionally, four modifications of the original model including shrinkage of the regression coefficients, and two Bayesian approaches with the expert model used as prior mean and different weights for the prior covariance matrix were fitted. We quantify the predictive performance of the different methods with respect to calibration and discrimination, using cross-validation. RESULTS: The predictive performance of the unshrinked regression coefficients was poor when applied to the Swiss cohort. Shrinkage improved the results, but a Bayesian model formulation with unspecified weight of the informative prior lead to large AUC and small Brier score, naïve and after cross-validation. The advantage of this approach is the flexibility in case of a prior-data conflict. CONCLUSIONS: Published risk prediction rules in clinical research need to be validated externally before they can be used in new settings. We propose to use a Bayesian model formulation with the original risk prediction rule as prior. The posterior means of the coefficients, given the validation data showed best predictive performance with respect to cross-validated calibration and discriminative ability

    An international comparative family medicine study of the Transition Project data from the Netherlands, Malta and Serbia. Is family medicine an international discipline? Comparing incidence and prevalence rates of reasons for encounter and diagnostic titles of episodes of care across populations

    Get PDF
    Item does not contain fulltextINTRODUCTION: This is a study of the epidemiology of family medicine (FM) in three practice populations from the Netherlands, Malta and Serbia. Incidence and prevalence rates, especially of reasons for encounter (RfEs) and episode labels, are compared. METHODOLOGY: Participating family doctors (FDs) recorded details of all their patient contacts in an episode of care (EoC) structure using electronic patient records based on the International Classification of Primary Care (ICPC), collecting data on all elements of the doctor-patient encounter. RfEs presented by the patient, all FD interventions and the diagnostic labels (EoCs labels) recorded for each encounter were classified with ICPC (ICPC-2-E in Malta and Serbia and ICPC-1 in the Netherlands). RESULTS: The content of family practice in the three population databases, incidence and prevalence rates of the common top 20 RfEs and EoCs in the three databases are given. CONCLUSIONS: Data that are collected with an episode-based model define incidence and prevalence rates much more precisely. Incidence and prevalence rates reflect the content of the doctor-patient encounter in FM but only from a superficial perspective. However, we found evidence of an international FM core content and a local FM content reflected by important similarities in such distributions. FM is a complex discipline, and the reduction of the content of a consultation into one or more medical diagnoses, ignoring the patient's RfE, is a coarse reduction, which lacks power to fully characterize a population's health care needs. In fact, RfE distributions seem to be more consistent between populations than distributions of EoCs are, in many respects

    An international comparative family medicine study of the Transition Project data from the Netherlands, Malta, Japan and Serbia. An analysis of diagnostic odds ratios aggregated across age bands, years of observation and individual practices

    Get PDF
    Item does not contain fulltextINTRODUCTION: This is a study of the process of diagnosis in family medicine (FM) in four practice populations from the Netherlands, Malta, Serbia and Japan. Diagnostic odds ratios (ORs) for common reasons for encounter (RfEs) and episode titles are used to study the process of diagnosis in international FM and to test the assumption that data can be aggregated across different age bands, practices and years of observation. METHODOLOGY: Participating family doctors (FDs) recorded details of all their patient contacts in an episode of care (EoC) structure using the International Classification of Primary Care (ICPC). RfEs presented by the patient and the diagnostic labels (EoC titles) recorded for each encounter were classified with ICPC. The relationships between RfEs and episode titles were expressed as ORs using Bayesian probability analysis to calculate the posterior (post-test) odds of an episode title given an RfE, at the start of a new EoC. RESULTS: The distributions of diagnostic ORs from the four population databases are tabled across age groups, years of observation and practices. CONCLUSIONS: There is a lot of congruence in diagnostic process and concepts between populations, across age groups, years of observation and FD practices, despite differences in the strength of such diagnostic associations. There is particularly little variability of diagnostic ORs across years of observation and between individual FD practices. Given our findings, it makes sense to aggregate diagnostic data from different FD practices and years of observation. Our findings support the existence of common core diagnostic concepts in international FM
    corecore