224 research outputs found

    Topology and shape optimization of induced-charge electro-osmotic micropumps

    Get PDF
    For a dielectric solid surrounded by an electrolyte and positioned inside an externally biased parallel-plate capacitor, we study numerically how the resulting induced-charge electro-osmotic (ICEO) flow depends on the topology and shape of the dielectric solid. In particular, we extend existing conventional electrokinetic models with an artificial design field to describe the transition from the liquid electrolyte to the solid dielectric. Using this design field, we have succeeded in applying the method of topology optimization to find system geometries with non-trivial topologies that maximize the net induced electro-osmotic flow rate through the electrolytic capacitor in the direction parallel to the capacitor plates. Once found, the performance of the topology optimized geometries has been validated by transferring them to conventional electrokinetic models not relying on the artificial design field. Our results show the importance of the topology and shape of the dielectric solid in ICEO systems and point to new designs of ICEO micropumps with significantly improved performance.Comment: 18 pages, latex IOP-style, 7 eps figure

    Mass and charge transport in micro and nano-fluidic channels

    Get PDF
    We consider laminar flow of incompressible electrolytes in long, straight channels driven by pressure and electro-osmosis. We use a Hilbert space eigenfunction expansion to address the general problem of an arbitrary cross section and obtain general results in linear-response theory for the mass and charge transport coefficients which satisfy Onsager relations. In the limit of non-overlapping Debye layers the transport coefficients are simply expressed in terms of parameters of the electrolyte as well as the hydraulic radius R=2A/P with A and P being the cross-sectional area and perimeter, respectively. In articular, we consider the limits of thin non-overlapping as well as strongly overlapping Debye layers, respectively, and calculate the corrections to the hydraulic resistance due to electro-hydrodynamic interactions.Comment: Invited paper presented at the Second International Conference on Transport Phenomena in Micro and Nanodevices, Il Ciocco Hotel and Conference Center, Barga, Italy, 11-15 June 2006. Accepted for publication in a special issue of Nanoscale and Microscale Thermophysical Engineering (Taylor & Francis

    Reaction-diffusion dynamics: confrontation between theory and experiment in a microfluidic reactor

    Full text link
    We confront, quantitatively, the theoretical description of the reaction-diffusion of a second order reaction to experiment. The reaction at work is \ca/CaGreen, and the reactor is a T-shaped microchannel, 10 ÎĽ\mum deep, 200 ÎĽ\mum wide, and 2 cm long. The experimental measurements are compared with the two-dimensional numerical simulation of the reaction-diffusion equations. We find good agreement between theory and experiment. From this study, one may propose a method of measurement of various quantities, such as the kinetic rate of the reaction, in conditions yet inaccessible to conventional methods

    Universality in edge-source diffusion dynamics

    Get PDF
    We show that in edge-source diffusion dynamics the integrated concentration N(t) has a universal dependence with a characteristic time-scale tau=(A/P)^2 pi/(4D), where D is the diffusion constant while A and P are the cross-sectional area and perimeter of the domain, respectively. For the short-time dynamics we find a universal square-root asymptotic dependence N(t)=N0 sqrt(t/tau) while in the long-time dynamics N(t) saturates exponentially at N0. The exponential saturation is a general feature while the associated coefficients are weakly geometry dependent.Comment: 4 pages including 4 figures. Minor changes. Accepted for PR

    Optimal Homogenization of Perfusion Flows in Microfluidic Bio-Reactors: A Numerical Study

    Get PDF
    In recent years, the interest in small-scale bio-reactors has increased dramatically. To ensure homogeneous conditions within the complete area of perfused microfluidic bio-reactors, we develop a general design of a continually feed bio-reactor with uniform perfusion flow. This is achieved by introducing a specific type of perfusion inlet to the reaction area. The geometry of these inlets are found using the methods of topology optimization and shape optimization. The results are compared with two different analytic models, from which a general parametric description of the design is obtained and tested numerically. Such a parametric description will generally be beneficial for the design of a broad range of microfluidic bioreactors used for, e.g., cell culturing and analysis and in feeding bio-arrays

    Dynamical Organization around Turbulent Bursts

    Full text link
    The detailed dynamics around intermittency bursts is investigated in turbulent shell models. We observe that the amplitude of the high wave number velocity modes vanishes before each burst, meaning that the fixed point in zero and not the Kolmogorov fixed point determines the intermittency. The phases of the field organize during the burst, and after a burst the field oscillates back to the laminar level. We explain this behavior from the variations in the values of the dissipation and the advection around the zero fixed point.Comment: 4 pages, REVTex, 3 figures in one ps-fil

    Biomarkers for exposure to ambient air pollution--comparison of carcinogen-DNA adduct levels with other exposure markers and markers for oxidative stress.

    Get PDF
    Human exposure to genotoxic compounds present in ambient air has been studied using selected biomarkers in nonsmoking Danish bus drivers and postal workers. A large interindividual variation in biomarker levels was observed. Significantly higher levels of bulky carcinogen-DNA adducts (75.42 adducts/10(8) nucleotides) and of 2-amino-apidic semialdehyde (AAS) in plasma proteins (56.7 pmol/mg protein) were observed in bus drivers working in the central part of Copenhagen, Denmark. In contrast, significantly higher levels of AAS in hemoglobin (55.8 pmol/mg protein), malondialdehyde in plasma (0. 96 nmol/ml plasma), and polycyclic aromatic hydrocarbon (PAH)-albumin adduct (3.38 fmol/ microg albumin) were observed in the suburban group. The biomarker levels in postal workers were similar to the levels in suburban bus drivers. In the combined group of bus drivers and postal workers, negative correlations were observed between bulky carcinogen-DNA adduct and PAH-albumin levels (p = 0.005), and between DNA adduct and [gamma]-glutamyl semialdehyde (GGS) in hemoglobin (p = 0.11). Highly significant correlations were found between PAH-albumin adducts and AAS in plasma (p = 0.001) and GGS in hemoglobin (p = 0.001). Significant correlations were also observed between urinary 8-oxo-7, 8-dihydro-2'-deoxyguanosine and AAS in plasma (p = 0.001) and PAH-albumin adducts (p = 0.002). The influence of the glutatione S-transferase (GST) M1 deletion on the correlation between the biomarkers was studied in the combined group. A significant negative correlation was only observed between bulky carcinogen-DNA adducts and PAH-albumin adducts (p = 0.02) and between DNA adduct and urinary mutagenic activity (p = 0.02) in the GSTM1 null group, but not in the workers who were homozygotes or heterozygotes for GSTM1. Our results indicate that some of the selected biomarkers can be used to distinguish between high and low exposure to environmental genotoxins
    • …
    corecore