18 research outputs found

    Effect of conjugated linoleic acids from beef or industrial hydrogenation on growth and adipose tissue characteristics of rats

    No full text
    Abstract Background The conjugated linoleic acid (CLA) content of beef can be increased by supplementing appropriate beef cattle diets with vegetable oil or oil seed. Yet the effect of consumption of such beef on adipose tissue characteristics is unclear, thus the study was conducted to compare adipose tissue responses of rats to diets containing beef from steers either not provided or provided the oil supplements to alter CLA composition of the fat in muscle. Methods Effects of feeding synthetic (industrial hydrogenation) CLA or CLA from beef on growth and adipose tissue responses of weanling, male, Wistar rats (n = 56; 14 per treatment diet) were investigated in a completely randomized design experiment. Diets were: control (CON) diet containing casein and soybean oil, synthetic CLA (SCLA) diet; where 1.69% synthetic CLA replaced soybean oil, two beef-diets; CONM and CLAM, containing freeze dried beef from steers either not fed or fed 14% sunflower seeds to increase CLA content of beef. Diets were isonitrogenous (20% protein) and isocaloric. Rat weights and ad libitum intakes were recorded every 2 wk. After 9 wk, rats were fasted for 24 h, blood sampled by heart puncture, sacrificed, tissue and organs were harvested and weights recorded. The adipose tissue responses with regard to cellularity and fatty acid compositions of retroperitoneal and inguinal adipose tissue were determined. Results Body weights and gains were comparable, but organ weights as percent of body weight were greater for rats fed SCLA than CONM. Fasting blood glucose concentration was lower (p 7 cells/g and 8.03 × 108 cells) than those fed CONM (28.88 × 107 cells/g and 32.05 × 108 cells, respectively). Conclusion Study suggests that dietary CLA either as synthetic or high CLA-beef may alter adipose tissue characteristics by decreasing the number of adipocytes and by decreasing the size of the tissue.</p

    Gene expression patterns of bovine perimuscular preadipocytes during adipogenesis

    No full text
    Bovine perimuscular fat (PMF) preadipocytes were induced to undergo adipogenesis in vitro in our recent study to define the expression patterns of genes involved in the differentiation process. Based on the understanding of the interaction among adipogenic genes, a broad overview of gene expression profile in the differentiating PMF preadipocytes was evaluated using bovine specific DNA microarray from day 2 to 8 post-differentiation induction. A total of 100 significantly differentially expressed genes were detected between differentiated and control cells including those involved in several biochemical pathways and cellular/molecular signaling. In addition, quantitative real-time PCR validated that typical adipogenic genes were up-regulated at early differentiation in the preadipocytes. These results suggest that the PMF preadipocyte system is available as a novel in vitro model for molecular adipogenesis studies in the bovine and that a series of genes are switched on/off during early events associated with adipogenesis

    Adipogenesis of bovine perimuscular preadipocytes

    No full text
    In this study, non-transformed progeny adipofibroblasts, derived from mature adipocyte dedifferentiation, was used as a novel in vitro model to study adipogenic gene expression in cattle. Adipofibroblasts from dedifferentiated mature perimuscular fat (PMF) tissue were cultured with differentiation stimulants until the cells exhibited morphological differentiation. Treated cells were harvested from day 2 to 16 for RNA extraction, whereas control cells were cultured without addition of stimulants. Results from time course gene expression assays by quantitative real-time PCR revealed that peroxisome proliferator-activated receptor gamma (PPAR-γ), sterol regulatory element binding protein 1 (SREBP-1) and their six down-stream genes were co-expressed at day 2 post-differentiation induction. When compared to other adipogenesis culture systems, the adipogenic gene expression of bovine PMF adipofibroblasts culture was different, especially to the rodent model. Collectively, these results demonstrated PPAR-γ and SREBP-1 cooperatively play a key role to regulate the re-differentiation of bovine adipofibroblasts, during early conversion stages in vitro

    Effects of biochar source, level of inclusion and particle size on in vitro dry matter disappearance, total gas and methane production and ruminal fermentation parameters in a barley silage-based diet

    No full text
    This study evaluated the effects of biochar differing in source, inclusion level, and particle size on DM disappearance (DMD), total gas and methane (CH4) production, and ruminal fermentation in a barley silage-based diet. The seven biochar products used were coconut (CP001 and CP014) or pine (CP002, CP015, CP016, CP023, CP024)-based. Experiment 1 evaluated these biochars at 4.5, 13.5 and 22.5% level of diet inclusion, whereas Experiment 2 evaluated CP002, CP016 and CP023 at 2.25 and 4.50% of the diet atThe accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author
    corecore