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1. Introduction 

The breeding goal of most livestock operations is maximizing profitability, which is a 

function of input and output ( Veerkamp & Emmans, 1995; Archer et al., 1999; Crews, 2005). 

In most livestock populations, selection programs have primarily focused on progressively 

improving means for output traits such as live weight gain, fertility, meat and milk yield 

(Archer et al., 1999; Sainz & Paulino, 2004; Crews, 2005). However, there has recently been a 

renewed interest in another component of profitability, namely the reduction of inputs or 

the increase in efficiency (Crews, 2005). Feed is one of the most important input 

components, and it represents more than one-half of the total costs in most livestock 

operations (Kennedy et al., 1993). In the dairy industry, feed cost represents about 40 to 50% 

of the total milk production cost and has increased substantially over the last few years 

(Garcia, 2009). Gibb & Macallister (1999) reported that the economic effect of a 5% 

improvement in feed efficiency is four times greater than a 5% improvement in average 

daily gain. Therefore, reducing production costs or increasing feed efficiency are the two 

most important ways to improve production efficiency and profitability. They also decrease 

environmental pollution and the carbon footprint (Capper et al., 2010). In order to gain the 

maximum benefits of genetic selection for energy efficiency, factors that influence energy 

efficiency and its indirect effects on other traits should be known. The most common 

measures of energy efficiency and their properties are reviewed in this chapter. It also deals 

with factors that practically affect energy efficiency. Furthermore, as there are very few 

reports on direct selection for energy efficiency in dairy cattle (Linn, 2006), the authors 

reviewed the indirect effect of selection for energy efficiency on other traits in beef cattle as 

well as in other species in addition to dairy cattle.  
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2. Energy efficiency traits 

Researchers have proposed many measures of energy efficiency such as feed conversion 

ratio (FCR), gross energy efficiency (GEE), residual feed intake (RFI) (Koch et al., 1963; 

Archer et al., 1999; Crews, 2005) and life time efficiency (LTE) (Vandehaar, 1998; Vandehaar 

& St-Pierre, 2006). Their definition, applications and benefits are different.  

FCR and GEE are the most common measures of efficiency in the literature. FCR is the ratio 

of input (e.g. feed) to output (e.g. weight gain or milk production) (Crews, 2005). In the 

dairy cow, the GEE is defined as the energy in the milk divided by the total energy intake 

(Veerkamp & Emmans, 1995). These approaches lead to only limited insight into efficiency 

of the entire production system (Crews, 2005). The problems of GEE and FCR have been 

discussed in numerous studies (Korver et al., 1991; Veerkamp & Emmans, 1995; Crews, 

2005) and are mainly categorized in three groups. First , the energy intake has different 

partial efficiencies for maintenance, lactation, pregnancy and body tissue gain or loss, but 

the GEE and FCR do not distinguish between them (Veerkamp & Emmans, 1995). Secondly, 

FCR and GEE are well known to be phenotypically and genetically correlated with 

measures of growth, production and mature size. Therefore, selection of animals based on 

these measures may increase the maintenance requirements. Finally, changes in GEE and 

FCR can be the result of changes in either intake (numerator), yield (denominator) or both 

(Gunsett, 1984; Veerkamp & Emmans, 1995) and selection direction cannot be predicted 

very well. Then, selection for improvement of FCR (i.e. decreased FCR) and GEE would 

result in increased growth rate, mature size, and consequently mature maintenance 

requirements (Korver et al., 1991). It can be concluded that improving FCR and GEE by 

selection for increased growth rate do not necessarily improve net feed efficiency, because of 

drawbacks associated with increased maintenance requirements ( Van der Werf, 2004; 

Crews, 2005).  

Lifetime efficiency (LTE), another measure of energy efficiency, is defined as “the capture of 

feed energy in milk, conceptus, and body tissue divided by gross energy intake during the 

life of cow, starting at birth” (Vandehaar, 1998; Vandehaar & St-Pierre, 2006). This index 

attempts to summarize an animal’s entire life efficiency and is a good criterion to set up a 

long term vision. In order to compare the LTE in dairy cows, total milk production should 

be standardized for all factors such as housing, feeding, age at first calving and calving 

interval. The LTE mostly depends on the precalving interval and intercalving intervals. The 

Precalving Interval is defined as the period from birth to first parturition and Intercalving 

Intervals are the intervals between successive calvings (King, 2006). The main concerns 

related to LTE are:  lots of information is required to calculate the LTE, it is applicable for the 

entire life, and it is influenced more by precalving and intercalving intervals.  

To overcome the problems associated with FCR, GEE, LTE and other measures of energy 

efficiency, an alternative measure can be expressed as residual feed intake (RFI). RFI is a 

measure of feed utilization corrected for live weight and production, and it is often referred 
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to as net feed or energy efficiency ( Koch et al., 1963; Korver et al., 1991; Luiting et al.,1992). 

The concept of RFI can be described as “the difference between the actual feed intake and 

that predicted on the basis of mean requirements for body weight maintenance and levels of 

production” (Koch et al., 1963); it is explained schematically in figure 1.  RFI relies simply on 

partitioning feed energy intake into portions required for body maintenance, stage and 

levels of production, and a residual portion. This residual portion is related to the true 

metabolic efficiency of an animal and would be comparable across individuals (Crews, 

2005). Variation in RFI probably reflects underlying biological efficiency after adjustment for 

energy deposition (Crews, 2005; Herd & Arthur, 2009 ). In a population, the mean RFI index 

over all individuals is zero and approximately half of all individuals have RFI values below 

or above the mean. The efficient animals have low RFI values; it implies they consume less 

feed without compromising their production (Crews, 2005). Indeed, RFI is a net feed 

efficiency measurement and it can be calculated at any time of an animal’s life. 

 

 

 
 

Figure 1. Schematic concept of residual feed intake (RFI). Two animals which have the same BW and 

ADG, are expected to consume the same amount of feed but in reality cow A consumes more than 

expected while cow B consumes less, so cow B is more efficient than A. 

3. Factors affecting energy efficiency in dairy cattle 

Several factors influence energy efficacy in dairy cattle. It is practically influenced by dry 

matter intake (DMI), production level, body tissue changes, age at first calving (AFC), and 

environmental factors (Vandehaar, 1998; Linn, 2006). Their approaches to affect the energy 

efficiency are different. 

 

BW = 550 Kg, Same level of production BW = 550 Kg, Same level of production 

Expected feed intake = 19.0 Kg/day Expected feed intake = 19.0 Kg/day 

Actual feed intake = 20.0 Kg/day Actual feed intake =18.0 Kg/day 

RFI = 20 - 19= +1.0 Kg/day RFI = 18 - 19= -1.0 Kg/day 

 woc tneiciffE woc tneiciffenI
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3.1. Dry matter intake and production 

Dry matter intake (DMI) and production are the direct components of most energy 

efficiency traits. Dry matter intake (DMI) affects energy efficiency through energy 

transformation mechanisms from gross to net energy. The basic rule of most common 

efficiency measures, FCR and GEE, is increased production means increased efficiency, but 

the relationship between the marginal benefit of increased production and efficiency is not 

always linear. 

DMI establishes the amount of nutrients available to an animal for maintenance and 

production. Inadequate intake of nutrients negatively affects production, efficient nutrient 

utilization and health status of the animal. Supplying nutrients in excess also increases feed 

costs and can result in excretion of nutrients into the environment ( NRC, 2001; Collier et al., 

2006). In dairy cows, the average DMI is 22.7 kg/d, and it ranges between 19.8 to 26 kg/d 

(Ordway et al., 2009; Vallimont et al., 2010). Heritability of DMI was reported from 0.16 to 

0.48, and its genetic correlation with energy intake ranged from 0.8 to 0.9 (Veerkamp, 1998; 

Vallimont et al., 2010). Therefore, DMI and energy intake are genetically almost the same 

trait. However, the energy transformation mechanisms of DMI, which affect energy 

efficiency, involve digestion, fermentation and metabolic processes. Gross energy (GE) is the 

amount of released energy in heat combustion. Net energy (NE) is the energy which is 

directly used to support maintenance functions, including conversion to milk, conceptus 

growth and body tissue gain (NRC, 2001). Feedstuffs have energy in the gross form and it is 

converted to net energy in several steps (figure 2). Some amounts of the GE are indigestible 

and ultimately appear in feces; the remaining part is called digestible energy (DE). Some 

part of DE is lost due to gas production (mainly methane) and urinary energy (mainly urea) 

during the fermentation process. The remaining DE after deduction for gas and urinary 

production is called metabolizable energy (ME). Finally, converting the ME to net energy 

(NE) requires metabolic reactions, which produce heat that is termed the heat increment 

(NRC, 2001; Vandehaar & St-Pierre, 2006). Therefore, the accessible amount of NE from GE 

depends on the amount of losses in digestion, fermentation and metabolic processes. 

Practically, it depends on many factors, such as DMI levels, passage rate, and dietary fibre 

(especially, effective neutral detergent fiber, eNDF) level (NRC, 2001). Some studies have 

been conducted to determine the relationship between these factors and amount of nutrient 

losses in the different steps of the transformation mechanisms (Moe, 1981; Van Soest et al., 

1992); they concluded there is an optimum point between them. For example, Vandehaar 

(1998) reviewed the literature and showed that the relationship between level of DMI and 

DE is not linear.  When a dairy cow consumes DMI for its maintenance requirements, almost 

80% of GE captured is in the form of DE. Furthermore, there is a reduction in digestibility as 

DMI increases (Vandehaar, 1998). Overall, NRC (2001) suggested that digestibility is 

depressed linearly at 4% per multiple of maintenance intake. It assumes that most of the 

cows consume 3 times their maintenance requirement, which is an optimum point of GEE. 

In addition, it has been shown that there is an optimum point of NDF level in terms of 

converting GE to DE, and it is reported to be between 25 to 30%. Amounts of NDF in the 

diet beyond this range will decrease energy intake. Higher levels of NDF fill the rumen, 
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whereas lower levels may cause some health problems (Eastridge, 2006; Vandehaar & St-

Pierre, 2006). Finally, the portion of losses in the different steps of energy transformation 

shifts and it is dependent on DMI levels. At higher levels of DMI the losses into feces 

increase while the amounts of losses as heat increment are greater at lower levels of intake 

(Vandehaar & St-Pierre, 2006). 

Although production is a fundamental component that determines efficiency, the 

relationship between marginal benefit of increased production and efficiency is not linear 

for all the time. During the past 18 years, the average milk production of Canadian Holstein 

cows has increased about 115 kg/cow/year and currently the average milk yield of a 

primarily Holstein herd is 9793 kg/cow/yr. The average rate of increase was 1.35% between 

1991 and 2009 (DHI, 2009), and it likely will continue to increase. In addition, milk yield 

heritability is reported as 0.3 (Lee et al., 1992; VanRaden et al., 2009) and ranges between 

0.16 to 0.5 (Veerkamp, 1998). This means that still there is still room to increase milk 

production by exploiting genetic selection. The genetic correlation between GEE and milk 

production in dairy cattle ranged from 0.88 to 0.95 (Pitchford, 2004). It confirms that 

selecting dairy cows for milk yield automatically improved GEE (Veerkamp & Emmans, 

1995). Consequently, FCR (4% FCM/DM) has increased from 0.91 in 1991 to 1.2 in 2006, and 

a common goal is 1.5 (Eastridge, 2006).  Korver (1991) concluded that the improved GEE and 

FCR mostly reflects the dilution of maintenance. Dilution of maintenance means that as 

cows consume more, a relatively small fraction of energy is used for maintenance and a 

larger portion is captured in milk. Although there is no evidence to suggest that the 

maintenance requirements depend on milk production and breed, cows with similar body 

weight and breed may vary for maintenance requirements by about 8 to 10% (NRC, 2001). 

These assumptions need further investigation.  To set a vision for the future, Vandehaar 

(1998) modelled the optimum point of milk yield. He proposed that above 15000 kg/yr, the 

marginal increase in efficiency approaches zero. Therefore, the positive correlation between 

milk production and efficiency that has existed in the past may change in the future, when 

average milk production surpasses 15000 kg/yr/cow (Vandehaar, 1998). 

DMI and milk yield are tightly linked as their genetic correlation is reported to be 0.5 

(Vallimont et al., 2010) ranging from 0.46 to 0.84 (Veerkamp, 1998). Consequently, selection 

decisions which change milk yield and body weight (BW) also change DMI (Veerkamp & 

Emmans, 1995). Genetic selection mostly focuses on milk yield and it indirectly affects DMI. 

However, with increased milk production per animal, there is a limit to the increase in DMI 

because of rumen fill; therefore, the density of NE in dairy rations has been elevated as milk 

production increased in the last 30 years. For instance, the dietary NE density of dairy cattle 

rations has increased from 1.23 in 1980 to more than 1.6 Mcal/kg in 2006 (Eastridge, 2006). 

Thus, it can be inferred that some of the improved efficiency due to increased milk 

production is withdrawn by increasing the dietary energy concentration in terms of 

expenses. Furthermore, the linear relationship between milk production and efficiency may 

change in the future. Therefore, these concerns drive researchers to define net energy 

efficiency using concepts such as RFI, which is independent from production and 

maintenance in dairy cattle.  
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Figure 2. Energy transformation processes from gross energy (GE) to net energy (NE). The portion of 

lost energy in different steps is dependent on DMI level. 

3.2. Body weight 

Body weight influences energy efficiency through its relationship with milk production and 

digestive capacity. Heritability of body weight (BW) is reported to be in a range of 0.26 to 

0.88 (Verrkamp, 1998). BW is genetically correlated with milk production. Although some 

researchers (Veerkamp, 1998; Vallimont et al., 2010) reported a negative correlation (range of 

-0.01 to -0.42), some other researchers reported positive correlations between BW and milk 

production (range of 0.05 to 0.45) (Veerkamp, 1998). This inconsistency in results could be 

due to mean differences of BW and milk production between populations under estimation. 

It can also be suggested that there is an optimum point of relationship between BW and 

milk production, and consequently energy efficiency. In order to illustrate this optimum 

relationship, Vandehaar (1998) modelled the relationship between body size, milk 

production and energy efficiency. He considered two possible relationships in which there 

were function of BW and digestive capacity (figure 3). In the first, he assumed that the 

digestive capacity of animals is not a function of BW and it is constant, the solid curve and 

dashed curve in figure 3. Therefore, increased BW increases the maintenance requirements 

and consequently decreases energy efficiency. In the second model, the digestive capacity 

was assumed to be a function of BW, so with increased BW digestive capacity will increase, 

and consequently a large cow would be efficient, dot-dashed curve and dashed curve in 

figure 3. In this case if a cow had a 200 kg greater BW (825 kg VS 625 kg), she should 

produce 60 kg/day more milk to become efficient. He concluded that the relationship 

between body size and efficiency depends on the relation between digestive capacities with 

body size (Vandehaar, 1998), and that there is an optimum point of relationship between 

BW and energy efficiency. 

3.3. Body tissue changes 

Body tissue changes increase energy efficiency by supporting milk production and tissue 

mobilization is a crucial factor in determining energy efficiency of dairy cattle. Although the 

conversion ratio of lost body reserves to milk production is less than that of regaining the  
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Figure 3. Adapted from Vandehaar (1998). He discussed the two possible relationships between 

digestive capacity and BW. In the first one, digestive capacity was not a function of BW while in the 

second, the digestive capacity was a function of BW. 

reserves from feedstuffs, reasonable levels of losses still increase the energy efficiency. From 

an evolutionary point of view, mammals use their stored energy reserves to produce milk 

and support their young when their requirements exceed DMI consumed. In nature as the 

calf grows older, it gradually relies less on mothers’ milk and the mother has an opportunity 

to regain energy resources for the next lactation (Bewley et al., 2008). Similarly, in the dairy 

industry, as the feed intake peak occurs later than the milk yield peak, dairy animals have a 

mechanism to use their body reserves to support milk production in early lactation and 

regain the body reserves in late lactation (Coffey et al., 2001; Bewley et al., 2008). In early 

lactation when energy intake is less than that used for milk, maintenance and activity, the 

cows are in a negative energy balance (NEB). Therefore, they sacrifice their body resources 

in this period to meet the requirements. Up to one-third of the total milk solids that are 

produced in early lactation, comes from body tissue reserves (Bewley et al., 2008). Practical 

measures of changes in energy resources include changes in BW and body condition score 

(BCS). BCS is a management technique used to appraise the body fat reserves in cattle 

(Coffey et al., 2001) and it is measured with either a 5 or a 9 point scale. The BCS represents 

65, 55 and 66 percent of fat, protein and energy variation in dairy cattle, respectively (NRC, 

2001). The ability to manage body reserves varies between animals, and they have a 

different pattern of BW and BCS changes during lactation and across lactations (Bewley et 

al., 2008). Heritability of changes in BW reportedly range from 0.1 to 0.27 (Verrkamp, 1998). 

Heritability estimates for BCS change depend on stage of lactation and range from 0.08 to 
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0.6 (Bewley et al., 2008). Negative and positive correlations have been reported between 

milk yield and BW changes (-0.41 to 0.45) (Verrkamp, 1998) and BCS changes (Bewley et al., 

2008). One BCS unit (5 point scale) is equivalent to ~400 Mcal of ME and its conversion ratio 

to milk is estimated at 0.82. It is enough to produce an additional 8 kg milk/day in the first 

60 days in milk (Vandehaar, 1998; Bewley et al., 2008). Therefore, losing one unit of BCS 

supports around 2000 kg of increased milk production over 305 days and it is expected to 

increase GEE from 25 to 26.5% in cows with a production of 8000 kg milk (Vandehaar, 1998). 

The lost energy reserves are replaced by cows in late lactation, and its replenishment 

conversion ratio is less (0.7) than that for loss (0.8) (Moe, 1981), but loss of BCS still increases 

efficiency (Vandehaar, 1998). Besides the increased efficiency, some researchers point out 

that side effects of losing energy reserves on other traits like reproduction and health should 

be considered (Vandehaar, 1998; Bewley et al., 2008). For example, cows restart reproduction 

activity after they pass the NEB period (Goff, 2006). Some of the metabolic diseases such as 

ketosis/fatty liver complex are highly correlated with NEB (Collier et al., 2006). Researchers 

proposed that there is a curvilinear relationship between BCS at calving and milk 

production; furthermore, maximum milk production is associated with 3.25 to 3.5 BCS at 

calving (Roche et al., 2007; Bewley et al., 2008). Indeed, during early lactation, a controlled 

loss of body condition of 0.5 to 1.0 units is associated with optimal milk production, health, 

and reproductive performance. Moreover, excessive BCS losses at calving predispose the 

animal to metabolic disorders such as ketosis and fatty liver (Spain, 1996; Bewley et al., 

2008). 

3.4. Age at first calving (AFC) 

Age at first calving (AFC) is the period between birth and first calving. It represents a period 

when animals cost the farmer due to yardage expenses. Yardage expenses include costs 

related to housing, feeding and veterinary care, which represent 15 to 20% of animal 

expenditures toward the cost of milk production (Mayer et al., 2004). Breeding programs 

aim to have AFC at 22 to 24 months of age, and reducing the AFC can increase animal life 

time efficiency (LTE) (Mayer et al., 2004, Vandehaar & St-Pierre, 2006). Reduced AFC should 

not compromise weight at calving. The data suggest that the optimum weight for Holstein 

cows right after calving, is 570 kg. The results also showed that milk yield will be reduced 

about 70 kg for every 10 kg body weight below the optimum (Vandehaar & St-Pierre, 2006). 

Therefore, AFC can be reduced by a combination of increasing average daily gain and 

decreasing age at breeding (Mayer et al., 2004). Decreased AFC, and consequently yard cost, 

is associated with increased feed cost to support a rapid growth rate. Furthermore, if the 

optimum breeding weight is not achieved, there will be a negative effect on subsequent milk 

production (Vandehaar & St-Pierre, 2006). Indeed, the economic benefit of a decreased AFC 

is not well understood and there is a need for further investigation. 

3.5. Environmental factors 

Changes in environmental conditions (temperature and humidity) and photoperiod are 

called seasonal changes. Seasonal changes affect energy efficiency by altering hormone 
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signals and the target cell’s responsiveness to hormonal stimulation (Collier et al., 2006). 

The thermoneutral zone is a range in which animals do not spend energy to maintain their 

normal body temperature. The upper critical range for dairy cattle is 25 to 26 0C and lower 

critical range depends on DIM and production level. The lower critical range is 2, -4 and -

10 0C for an animal at maintenance or producing 10 kg or 20 kg of milk, respectively. Dairy 

cows in cold stress do not need to change their energy requirements due to high heat 

production but it has an effect on feed digestibility. Research has shown that there is a 2% 

reduction in digestibility for every 10 degree reduction in ambient temperature;  this can 

possibly be attributed to the increase in passage rate of digesta (NRC, 2001). Therefore, cold 

stress does not affect energy efficiency significantly in dairy cattle; while, mild to severe 

heat stress increases the maintenance requirements from 0.7 to 2.4 %, respectively, and 

decreases DMI. Heat stress affects animal behaviour, metabolism and efficiency (NRC, 

2001).  

Photoperiod, another environmental factor, affects lactation, reproduction, production, 

growth and immune function. Most studies are done using short or long day photoperiod 

concept. Results demonstrated that the physiological basis of attainment of puberty is 

controlled by photoperiod rather than ambient temperature. Long photoperiod causes early 

puberty that is associated with rapid growth in calves, and greater mammary parenchyma 

(Collier et al., 2006). Long day photoperiod can affect energy efficiency by lowering AFC, 

and increases milk production, but it does not affect feeding behaviour. In addition, other 

temporary environmental factors such as milking frequency can also affect milk production 

and energy efficiency. Wall & McFadden (2007) concluded that milking 2 times more 

frequently than usual (4 vs 2 times/day) for a 3 week interval during early lactation 

significantly increases milk production. 

4. Indirect effects of selection for energy efficiency on some related traits 

To this point, factors that practically and directly affect energy efficiency in dairy  

cattle have been discussed; to maximize gain due to genetic selection for energy 

efficiency, its genetic base and indirect effects on other traits should also be  

known. Although reports on direct/indirect selection for efficiency in dairy cattle  

are scarce (Linn, 2006), many studies have been conducted to study its heritability  

and the direct/indirect effect that selecting animals based on efficiency traits has on 

other related traits in different species. The reviewed results showed that the weighted 

mean of 28 and 9 estimates of heritability in beef for FCR and GEE were reported as 0.32 

± 0.02 and 0.37 ± 0.05, respectively (Koots et al., 1994). The weighted mean of 35 

estimates of heritability for RFI in 7 species was reported 0.25 ± 0.02 (Pitchford, 2004). In 

order to point out the potential effect of selection for efficiency on other related traits, 

authors discussed this effect on reproduction, activities, organs, body composition, 

metabolites and health in beef cattle as well as other species in addition to dairy cattle 

(table 1). 
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Species Reproduction  Activities Organs Chemical 

composition 

Metabolites Health 

Dairy Decrease daughter 

fertility 

Data not available. Data not 

available. 

Data not 

available. 

Data not 

available. 

Increases the 

incidence of 

metabolic 

diseases 

(Wassmuth 

et al., 2000)  

Beef Decreases age at 

puberty, does not 

affect pregnancy 

rate (Shaffer et al., 

2010). Did not 

affect bull 

performance 

(Wang et al., 2012). 

Less feeding 

duration and less 

head-down time, 

(Durunna et al., 

2010; Nkrumah et 

al., 2006; Kelly et 

al., 2010). 

Did not affect 

tissues of gastro 

intestinal organs 

and internal 

organs 

(Richardson et 

al., 2001). 

Less body fat 

(Richardson et 

al., 2001) more 

empty body 

water (Basarb 

et al., 2003). 

Low plasma 

protein, blood 

concentration of 

urea and 

aspartate amino 

transfer (Herd & 

Arthur, 2009) 

high insulin, 

glucose and 

NEFA (Kelly et 

al., 2010). 

Data not 

available. 

Pig Decreased litter 

size (Estany et al., 

2002) 

Less feeding time, 

less visits per day, 

less total time in 

feeder (Von Felde 

et al., 1996) 

    

Mice Decreased litter 

size, ovulation rate 

(Nielsen et al., 

1997) 

Less activities 

(Hastings et al., 

1997; Rau et al., 

2000) 

Larger livers, 

caeca, stomachs 

but smaller 

hearts (Hughes 

& Pitchford, 

2004) 

Fatter 

(Hughes & 

Pitchford, 

2004) 

 Data not 

available. 

Chicken Increased fertility, 

hatchability, 

decreased 

mortality 

(Morrisson et al., 

1997). No losses in 

egg production 

(Bordas et al.,1992) 

Less activities 

(Luiting &Urff., 

1991) 

 Controversial 

results, 

increase or 

decrease fat 

traits (Liting & 

Urff, 1991) 

  

Table 1. Summary of indirect response of selection for energy efficiency on related traits in different 

species 

4.1. Reproduction 

Reproductive performance and milk production are two main entities in the profitability of 

dairy cattle industry (LeBlanc, 2010). Although milk production and energy efficiency have 

increased, the genetic trend of average daughter fertility in Canadian Holsteins has shown a 

2% reduction over 14 years. It decreased from 101.9 in 1995 to 99.9 in 2009 (Van Doormaal, 

2010). As a result, a selection objective to increase milk production seems to favour cows 

that genetically produce more milk, but consequently are prone to experience more negative 
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energy balance (NEB). It has been reported that the time of first estrus is closely related to 

NEB during the first 2 - 3 weeks after calving (Coffey et al., 2006) and “cows appear to 

resume reproductive activity only after the nadir of NEB has passed” (Veerkamp, 1998).  

Some researchers studied the indirect effect of selection for energy efficiency on 

reproduction traits in beef, and other species. For example, Shaffer et al. (2010) allocated beef 

heifers into three groups based on their efficiency (low, medium and high RFI) and studied 

the indirect effects of selection for efficiency on reproduction performance. They reported a 

negative relationship between RFI and age at puberty. The efficient animals reached puberty 

later than inefficient animals but it did not affect pregnancy or conception rates. They also 

quantified this relationship and reported that each unit increase in RFI corresponds to a 

decrease of 7.5 days in age at puberty. Wang et al. (2012) studied the effect of RFI on bull’s 

reproductive performance and fertility. They had 20 high RFI (inefficient) and 22 low RFI 

(efficient)  beef bulls in a multi-sire breeding system on pasture and examined the 

association between RFI and semen quality traits (density, progressive motility and 

morphology), progeny per sire and some other related traits. They concluded that selection 

for RFI does not have a negative effect on reproductive performance and fertility in bulls 

bred in multi-sire groups on pasture.    

In other species, Nielsen et al. (1997) divergently selected mice for energy efficiency, based on 

heat loss, over 15 generations. They had high efficient, low efficient and control groups, and 

each group had three replicates. Indirect effects of selection for energy efficiency on 

reproduction performance (litter size, ovulation rate, number of foetuses at 7 days of gestation 

and ovulation success) were measured. The results showed that the high efficient line (low 

heat loss) had 20% smaller litters at first parity in the 15th generation. The efficient line also had 

a 23% lower ovulation rate when measured at the second parity. However, the high efficiency 

line had a higher ovulation success rate (86%) than the low efficiency line (84%), but the 

differences were not significant (Nielsen et al., 1997). A report on pigs demonstrated that pigs 

with high litter size had a poorer efficiency compared to the control group (Estany et al., 2002). 

However, Morisson et al (1997) divergently selected hens for RFI over 18 generations and 

studied the effect of energy efficiency selection on reproduction and sperm characteristics. 

Contrary to mice and pigs, they found that a high efficient line of hens had only 6% 

unfertilised eggs compared with 30% in a low efficiency line. The early mortality rate in the 

inefficient line was twice that of the efficient line. Overall, the efficient line had a better 

hatchability performance (Morrisson et al., 1997). The better reproductive performance of 

efficient hens is supported by other researchers who selected hens for low RFI without losses 

in egg production (Bordas et al., 1992). It could be inferred that some species sacrifice litter size 

and maintain energy to better take care of the fetus. There is a need to study the associated 

effects of selection for energy efficiency and reproductive performance in dairy cattle.  

4.2. Activity 

Energy expenditure of feeding depends on feeding behaviour. In addition, results of studies 

in different species have shown that selection for efficiency had effects on animal’s feeding 
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behaviour. Durunna et al (2010) conducted a 3 year study on 402 and 419 steers on two 

different diets (grower and finisher). They measured feed intake, feeding duration, head-

down time and bunk visits using the Growsafe system.  Their results showed that the 

efficient steers (Low RFI) exhibited less feeding duration, head down time, and bunk visits. 

In another study, efficient beef cattle (low RFI) had less feeding duration, but a higher 

feeding frequency (Nkrumah et al., 2006). These results are also supported by other 

researchers studying finishing heifers (Kelly et al., 2010) that showed efficient heifers had 

less feeding duration.  

Some studies have been done on mice to determine the effect of selection for RFI on activity. 

Hastings et al (1997) found that high efficiency (low RFI) mice were 67% less active than the 

low efficiency mice. Furthermore, Rauw et al (2000) selected mice for high litter size at birth 

(S line) and showed that the S line had higher RFI (low efficiency). They reported that low 

efficiency mice, when compared with control group, had more locomotion activity, and they 

ran faster in two types of runaway tests. In hens, Luiting &Urff (1991) reported that high 

efficient layer hens were less active than the control group. However, efficient boars had a 

lower feeding rate, less feed intake per visit, fewer visits per day, and less total time in the 

feeder per day (Von Felde et al., 1996). Herd & Arthur (2009) concluded that the positive 

and high genetic correlation of feeding time per day and eating sessions per day with RFI 

indicates that there are some common genes controlling feeding behaviour and RFI. 

4.3. Organs and body composition 

Liver, the largest visceral organ, accounts for 17 to 31% of total body energy expenditures 

(Eisemann & Nienaber, 1990; Ortigues and Visseiche 1995). All of the visceral organs 

account for up to 40 to 50% of body energy expenditures in sheep and cattle (Perry et al., 

1997). It was concluded that selection for efficiency may result in lower proportions of liver 

and visceral tissues (Pitchford, 2004). In female mice, the results contradicted this conclusion 

and the efficient mice (low RFI) had larger livers, caeca, intestines, and stomachs but smaller 

hearts (Hughes & Pitchford, 2004). In cattle divergently selected for RFI, the weight of 

highly activate tissues of gastrointestinal organs and internal organs were not significantly 

different. It was concluded that variation in ME intake and energy efficiency was due to 

metabolic processes rather than changes in body composition (Richardson et al., 2001). 

Results of divergently selecting steers for RFI showed that there is a correlation between 

chemical composition and variation in RFI. Animals with low RFI had more whole-body 

chemical protein and less whole-body chemical fat (Richardson at al., 2001). Basarab et al 

(2003) also found that efficient steers had more empty body water but less empty body fat 

than low efficient steers. The divergently selected steers had almost the same amount of 

empty body protein. In another study, Shaffer et al (2010) grouped beef heifers of British 

breeds into low, medium and high RFI groups and found that efficient heifers (low RFI) had 

less lean meat area (cm2) per 100 kg of BW than inefficient (high RFI) heifers. In mice, the 

results have shown that the high efficiency lines had slightly lower post-weaning weight (0-

12%), little differences in mature weight (0-30%) and were fatter (5-60% depending on the 
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age at measurement) than low efficiency lines. Luiting & Urff (1991) summarized reports of 

phenotypic and genetic correlations between RFI and body fat traits in chickens and found 

that they ranged from -0.4 to 0.45. Herd & Arthur (2009) concluded that the amount and 

direction of association between body composition and variation in energy efficiency in 

cattle depends on age and stage of maturity. 

4.4. Metabolites and health 

There are some reports on associations between efficiency and some metabolites, which are 

indicators of production, and health. For example, high concentrations of total plasma 

protein, blood concentrations of urea and aspartate amino transfer were reported in high 

RFI cattle (inefficient) compared to low RFI (efficient). These metabolites are an index of 

protein turnover and inefficient cattle had higher protein turnover rates compared to low 

efficient cattle (Herd & Arthur, 2009). In other research, Kelly et al (2010) divergently 

selected heifers based on RFI and found that inefficient animals had higher plasma urea, B-

hydroxybutyrate, and leptin concentration and lower NEFA, plasma glucose and insulin 

than efficient animals. Higher levels of cortisol and red and white blood cells were reported 

in high RFI steers, which indicates that these animals (inefficient) may be more susceptible 

to stress (Richardson et al., 2004). In another report, a positive correlation between IGF-I, a 

growth metabolite, and RFI was reported in beef cattle (Moore et al., 2005). However, 

separation of RFI into post weaning and feedlot periods determined that there is a positive 

correlation of IGF-I with RFI during post weaning time while there is a negative correlation 

during the feedlot period (Herd & Arthur., 2009). Kelly et al (2010) concluded that some 

plasma analytes such as B-hydroxybutyrate may be potential indicators of net efficiency in 

beef cattle. 

Overall, animals are efficient and profitable, if they are healthy. Rauw et al (1998) reviewed 

undesirable effects of selection for high efficiency in farm animals and concluded that 

selection had a negative correlation with health traits. Wassmuth et al (2000) used feed 

intake data of 7752 young dairy bulls (2203 Danish Red, 4527 Danish Friesian and 1022 

Danish Jersey), and combined the feed intake data with recorded incidence of mastitis, 

retained placenta, metritis, sole of ulcer and ketosis data of 473,613 dairy cows in their early 

lactation to investigate the relationship between efficiency and diseases in dairy cattle. They 

defined efficiency as “the feed energy intake per kilogram live weight gain” in bulls. The 

size and direction of relationship depended on breed, but the overall energy efficiency was 

positively correlated with incidence of diseases. Currently, selection indices in dairy cattle 

favour animals with high milk production and consequently negative energy balance (NEB). 

NEB is generally related to poorer health status and fertility and it can have an indirect 

economic effect (Goff, 2006; Veerkamp, 1998). 

Overall, the physiological basis of energy efficiency (RFI) has been reviewed by Herd & 

Arthur (2009). The results of Angus steers divergently selected for net feed efficiency (RFI) 

revealed that feeding pattern, metabolism including turn over and stress, body composition, 

digestibility, heat increment of fermentation, and activity accounted for 2, 37, 5, 10, 9 and 10 
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% of the variation in RFI, respectively, and the remaining variation was attributed to other 

unknown processes (Herd & Arthur, 2009). 

5. Conclusion 

It can be concluded that there is an optimum point for the factors (DMI, milk production, 

body weight, AFC and environment factors) that influence the energy efficiency, and their 

relationship with energy efficiency is not linear. Hence, increasing output traits does not 

necessarily increase net energy efficiency. Therefore, the measures of energy efficiency that 

represent net efficiency, like RFI, which is independent from maintenance and production, 

need to be considered to improve efficiency in dairy cattle. It is proven that RFI is a robust 

measure of the animals’ energy efficiency because it is independent from animals’ 

maintenance requirements and level of production. Genetic improvement on energy 

efficiency can be achieved through selection for RFI in the dairy industry since the 

heritability estimates for RFI are moderate for most species (h2 = 0.25). Also, the traits are 

correlated and there are inconsistent results between species for indirect response of 

selection for energy efficiency on other related traits especially reproduction and health 

traits. Care should be taken when animals are selected for energy efficiency. Further 

research is required to define RFI in dairy cattle and to determine the indirect effects that 

selecting for efficiency may exert on other related traits, especially those related to 

reproduction and health. 
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