10 research outputs found

    Multifactor Dimensionality Reduction as a Filter-Based Approach for Genome Wide Association Studies

    Get PDF
    Advances in genotyping technology and the multitude of genetic data available now provide a vast amount of data that is proving to be useful in the quest for a better understanding of human genetic diseases through the study of genetic variation. This has led to the development of approaches such as genome wide association studies (GWAS) designed specifically for interrogating variants across the genome for association with disease, typically by testing single locus, univariate associations. More recently it has been accepted that epistatic (interaction) effects may also be great contributors to these genetic effects, and GWAS methods are now being applied to find epistatic effects. The challenge for these methods still remain in prioritization and interpretation of results, as it has also become standard for initial findings to be independently investigated in replication cohorts or functional studies. This is motivating the development and implementation of filter-based approaches to prioritize variants found to be significant in a discovery stage for follow-up for replication. Such filters must be able to detect both univariate and interactive effects. In the current study we present and evaluate the use of multifactor dimensionality reduction (MDR) as such a filter, with simulated data and a wide range of effect sizes. Additionally, we compare the performance of the MDR filter to a similar filter approach using logistic regression (LR), the more traditional approach used in GWAS analysis, as well as evaporative cooling (EC)-another prominent machine learning filtering method. The results of our simulation study show that MDR is an effective method for such prioritization, and that it can detect main effects, and interactions with or without marginal effects. Importantly, it performed as well as EC and LR for main effect models. It also significantly outperforms LR for various two-locus epistatic models, while it has equivalent results as EC for the epistatic models. The results of this study demonstrate the potential of MDR as a filter to detect gene–gene interactions in GWAS studies

    Novel human genetic variants associated with extrapulmonary tuberculosis: a pilot genome wide association study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Approximately 5-10% of persons infected with <it>M. tuberculosis </it>develop tuberculosis, but the factors associated with disease progression are incompletely understood. Both linkage and association studies have identified human genetic variants associated with susceptibility to pulmonary tuberculosis, but few genetic studies have evaluated extrapulmonary disease. Because extrapulmonary and pulmonary tuberculosis likely have different underlying pathophysiology, identification of genetic mutations associated with extrapulmonary disease is important.</p> <p>Findings</p> <p>We performed a pilot genome-wide association study among 24 persons with previous extrapulmonary tuberculosis and well-characterized immune defects; 24 pulmonary tuberculosis patients and 57 patients with <it>M. tuberculosis </it>infection served as controls. The Affymetrix GeneChip Human Mapping Xba Array was used for genotyping; after careful quality control, genotypes at 44,175 single nucleotide polymorphisms (SNPs) were available for analysis. Eigenstrat quantified population stratification within our sample; logistic regression, using results of the Eigenstrat analysis as a covariate, identified significant associations between groups. Permutation testing controlled the family-wise error rate for each comparison between groups. Four SNPs were significantly associated with extrapulmonary tuberculosis compared to controls with <it>M. tuberculosis </it>infection; one (rs4893980) in the gene PDE11A, one (rs10488286) in KCND2, and one (rs2026414) in PCDH15; one was in chromosome 7 but not associated with a known gene. Two additional variants were significantly associated with extrapulmonary tuberculosis compared with pulmonary tuberculosis; one (rs340708) in the gene FAM135B and one in chromosome 13 but not associated with a known gene. The function of all four genes affects cell signaling and activity, including in the brain.</p> <p>Conclusions</p> <p>In this pilot study, we identified 6 novel variants not previously known to be associated with extrapulmonary tuberculosis, including two SNPs more common in persons with extrapulmonary than pulmonary tuberculosis. This provides some support for the hypothesis that the pathogenesis and genetic predisposition to extrapulmonary tuberculosis differs from pulmonary tuberculosis. Further study of these novel SNPs, and more well-powered genome-wide studies of extrapulmonary tuberculosis, is warranted.</p

    Polymorphisms in IL-1β, vitamin D receptor <it>Fok</it>1, and Toll-like receptor 2 are associated with extrapulmonary tuberculosis

    No full text
    Abstract Background Human genetic variants may affect tuberculosis susceptibility, but the immunologic correlates of the genetic variants identified are often unclear. Methods We conducted a pilot case-control study to identify genetic variants associated with extrapulmonary tuberculosis in patients with previously characterized immune defects: low CD4+ lymphocytes and low unstimulated cytokine production. Two genetic association approaches were used: 1) variants previously associated with tuberculosis risk; 2) single nucleotide polymorphisms (SNPs) in candidate genes involved in tuberculosis pathogenesis. Single locus association tests and multifactor dimensionality reduction (MDR) assessed main effects and multi-locus interactions. Results There were 24 extrapulmonary tuberculosis cases (18 black), 24 pulmonary tuberculosis controls (19 black) and 57 PPD+ controls (49 black). In approach 1, 22 SNPs and 3 microsatellites were assessed. In single locus association tests, interleukin (IL)-1β +3953 C/T was associated with extrapulmonary tuberculosis compared to PPD+ controls (P = 0.049). Among the sub-set of patients who were black, genotype frequencies of the vitamin D receptor (VDR) Fok1 A/G SNP were significantly different in extrapulmonary vs. pulmonary TB patients (P = 0.018). In MDR analysis, the toll-like receptor (TLR) 2 microsatellite had 76% prediction accuracy for extrapulmonary tuberculosis in blacks (P = 0.002). In approach 2, 613 SNPs in 26 genes were assessed. None were associated with extrapulmonary tuberculosis. Conclusions In this pilot study among extrapulmonary tuberculosis patients with well-characterized immune defects, genetic variants in IL-1β, VDR Fok1, and TLR2 were associated with an increased risk of extrapulmonary disease. Additional studies of the underlying mechanism of these genetic variants are warranted.</p

    Polymorphisms in IL-1beta, vitamin D receptor Fok1, and Toll-like receptor 2 are associated with extrapulmonary tuberculosis

    Get PDF
    Submitted by Sandra Infurna ([email protected]) on 2018-05-17T13:37:24Z No. of bitstreams: 1 paulorz_antas_etal_IOC_2010.pdf: 388528 bytes, checksum: a3221660e0f6bf9677d1e185f0c331cf (MD5)Approved for entry into archive by Sandra Infurna ([email protected]) on 2018-05-17T13:52:37Z (GMT) No. of bitstreams: 1 paulorz_antas_etal_IOC_2010.pdf: 388528 bytes, checksum: a3221660e0f6bf9677d1e185f0c331cf (MD5)Made available in DSpace on 2018-05-17T13:52:37Z (GMT). No. of bitstreams: 1 paulorz_antas_etal_IOC_2010.pdf: 388528 bytes, checksum: a3221660e0f6bf9677d1e185f0c331cf (MD5) Previous issue date: 2010North Carolina State University. Bioinformatics Research Center. Department of Statistics. Raleigh, NC, USA.Vanderbilt University School of Medicine. Department of Medicine. Division of Infectious Dieseases. Nashville, Tennessee, USANorth Carolina State University. Bioinformatics Research Center. Department of Statistics. Raleigh, NC, USA.Vanderbilt University School of Medicine. Department of Biomedical Informatics. Nashville, Tennessee, USA.National Institutes of Health. Laboratory of Clinical Infectious Diseases. Bethesda, MD, USA.Vanderbilt University School of Medicine. Department of Medicine. Division of Infectious Dieseases. Nashville, Tennessee, USA / Vanderbilt University School of Medicine. Department of Medicine.. Center for Health Services Research. Nashville, TN, USA.. Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Imunologia Clínica. Rio de Janeiro, RJ, Brasil.Background: Human genetic variants may affect tuberculosis susceptibility, but the immunologic correlates of the genetic variants identified are often unclear. Methods: We conducted a pilot case-control study to identify genetic variants associated with extrapulmonary tuberculosis in patients with previously characterized immune defects: low CD4+ lymphocytes and low unstimulated cytokine production. Two genetic association approaches were used: 1) variants previously associated with tuberculosis risk; 2) single nucleotide polymorphisms (SNPs) in candidate genes involved in tuberculosis pathogenesis. Single locus association tests and multifactor dimensionality reduction (MDR) assessed main effects and multi-locus interactions. Results: There were 24 extrapulmonary tuberculosis cases (18 black), 24 pulmonary tuberculosis controls (19 black) and 57 PPD+ controls (49 black). In approach 1, 22 SNPs and 3 microsatellites were assessed. In single locus association tests, interleukin (IL)-1b +3953 C/T was associated with extrapulmonary tuberculosis compared to PPD+ controls (P = 0.049). Among the sub-set of patients who were black, genotype frequencies of the vitamin D receptor (VDR) Fok1 A/G SNP were significantly different in extrapulmonary vs. pulmonary TB patients (P = 0.018). In MDR analysis, the toll-like receptor (TLR) 2 microsatellite had 76% prediction accuracy for extrapulmonary tuberculosis in blacks (P = 0.002). In approach 2, 613 SNPs in 26 genes were assessed. None were associated with extrapulmonary tuberculosis. Conclusions: In this pilot study among extrapulmonary tuberculosis patients with well-characterized immune defects, genetic variants in IL-1b, VDR Fok1, and TLR2 were associated with an increased risk of extrapulmonary disease. Additional studies of the underlying mechanism of these genetic variants are warranted

    Pharmacometabolomic Assessment of Metformin in Non-diabetic, African Americans.

    Get PDF
    Millions of individuals are diagnosed with type 2 diabetes mellitus (T2D), which increases the risk for a plethora of adverse outcomes including cardiovascular events and kidney disease. Metformin is the most widely prescribed medication for the treatment of T2D; however, its mechanism is not fully understood and individuals vary in their response to this therapy. Here, we use a non-targeted, pharmacometabolomics approach to measure 384 metabolites in 33 non-diabetic, African American subjects dosed with metformin. Three plasma samples were obtained from each subject, one before and two after metformin administration. Validation studies were performed in wildtype mice given metformin. Fifty-four metabolites (including 21 unknowns) were significantly altered upon metformin administration, and 12 metabolites (including six unknowns) were significantly associated with metformin-induced change in glucose (q &lt; 0.2). Of note, indole-3-acetate, a metabolite produced by gut microbes, and 4-hydroxyproline were modulated following metformin exposure in both humans and mice. 2-Hydroxybutanoic acid, a metabolite previously associated with insulin resistance and an early biomarker of T2D, was positively correlated with fasting glucose levels as well as glucose levels following oral glucose tolerance tests after metformin administration. Pathway analysis revealed that metformin administration was associated with changes in a number of metabolites in the urea cycle and in purine metabolic pathways (q &lt; 0.01). Further research is needed to validate the biomarkers of metformin exposure and response identified in this study, and to understand the role of metformin in ammonia detoxification, protein degradation and purine metabolic pathways
    corecore