11 research outputs found

    A case of sequential medical therapy for advanced ureteral cancer in Liā€“Fraumeni syndrome

    No full text
    Introduction Liā€“Fraumeni syndrome, an autosomal dominant cancer predisposition syndrome caused by a pathogenic variant of TP53, a tumor suppressor gene, leads to a high risk from early childhood of developing various types of cancers. Here, we report a case of advanced ureteral cancer in Liā€“Fraumeni syndrome. Case presentation A 73ā€‰yearsā€old female patient, who had been diagnosed genetically as Liā€“Fraumeni syndrome; suffered from chondrosarcoma in the left pelvic joint, bilateral breast cancer, endometrial cancer, gastric cancer, and colon cancer in her history. She was diagnosed as unresectable advanced urothelial cancer during continuous magnetic resonance imaging surveillance, underwent avelumab maintenance therapy after the combination of gemcitabine and cisplatin chemotherapy. The efficacies of gemcitabine and cisplatin chemotherapy and avelumab maintenance therapy were good. Conclusion We report an advanced urothelial cancer in a patient with Liā€“Fraumeni syndrome who demonstrated good efficacies to sequential medical therapy

    Expression of Activating KIR2DS2 and KIR2DS4 Genes after Hematopoietic Cell Transplantation: Relevance to Cytomegalovirus Infection

    Get PDF
    The important role of activating killer immunoglobulin-like receptors (KIRs) in protecting against cytomegalovirus (CMV) reactivation has been described previously in patients undergoing hematopoietic cell transplantation (HCT). More specifically, the presence of multiple activating KIRs and the presence of at least KIR2DS2 and KIR2DS4 in the donor genotype identified a group of HCT patients at low risk for CMV reactivation. However, CMV infection still occurs in patients with the KIR protective genotype, and the question has been raised as to whether this is related to the lack of KIR expression. In this report, expression of the KIR2DS2 and KIR2DS4 genes, as measured by mRNA-based quantitative polymerase chain reaction in both the donor cells and the HCT recipient cells, was studied relative to CMV reactivation. In the control samples from healthy donors, the median range for KIR2DS2 and KIR2DS4 expression was low, with 35% of donors considered null-expressers. Interestingly, KIR2DS2 and KIR2DS4 expression was elevated after HCT compared with donor expression before HCT, and was significantly elevated in CMV viremic compared with CMV nonviremic HCT recipients. The CMV seropositivity of donors was not associated with activating KIR expression, and donor null expression in those with the KIR2DS2 or KIR2DS4 genotype was not predictive for CMV reactivation in the recipient. After controlling for other transplant factors, including donor type (sibling or unrelated), transplant source (bone marrow or peripheral blood stem cells), and acute GVHD grade, regression analysis of elevated KIR gene expression found an association for both KIR2DS2 and KIR2DS4, with a 7-fold increase in risk for CMV reactivation. We speculate that the elevated activating KIR expression in CMV-viremic HCT recipients is either coincidental with factors that activate CMV or is initiated by CMV or cellular processes responsive to such CMV infection reactivation

    Quality control project of NGS HLA genotyping for the 17th International HLA and Immunogenetics Workshop

    No full text
    The 17th International HLA and Immunogenetics Workshop (IHIW) organizers conducted a Pilot Study (PS) in which 13 laboratories (15 groups) participated to assess the performance of the various sequencing library preparation protocols, NGS platforms and software in use prior to the workshop. The organizers sent 50 cell lines to each of the 15 groups, scored the 15 independently generated sets of NGS HLA genotyping data, and generated "consensus" HLA genotypes for each of the 50 cell lines. Proficiency Testing (PT) was subsequently organized using four sets of 24 cell lines, selected from 48 of 50 PS cell lines, to validate the quality of NGS HLA typing data from the 34 participating IHIW laboratories. Completion of the PT program with a minimum score of 95% concordance at the HLA-A, HLA-B, HLA-C, HLA-DRB1 and HLA-DQB1 loci satisfied the requirements to submit NGS HLA typing data for the 17th IHIW projects. Together, these PS and PT efforts constituted the 17th IHIW Quality Control project. Overall PT concordance rates for HLA-A, HLA-B, HLA-C, HLA-DPA1, HLA-DPB1, HLA-DQA1, HLA-DQB1, HLA-DRB1, HLA-DRB3, HLA-DRB4 and HLA-DRB5 were 98.1%, 97.0% and 98.1%, 99.0%, 98.6%, 98.8%, 97.6%, 96.0%, 99.1%, 90.0% and 91.7%, respectively. Across all loci, the majority of the discordance was due to allele dropout. The high cost of NGS HLA genotyping per experiment likely prevented the retyping of initially failed HLA loci. Despite the high HLA genotype concordance rates of the software, there remains room for improvement in the assembly of more accurate consensus DNA sequences by NGS HLA genotyping software

    Quality control project of NGS HLA genotyping for the 17th International HLA and Immunogenetics Workshop

    No full text
    The 17th International HLA and Immunogenetics Workshop (IHIW) organizers conducted a Pilot Study (PS) in which 13 laboratories (15 groups) participated to assess the performance of the various sequencing library preparation protocols, NGS platforms and software in use prior to the workshop. The organizers sent 50 cell lines to each of the 15 groups, scored the 15 independently generated sets of NGS HLA genotyping data, and generated "consensus" HLA genotypes for each of the 50 cell lines. Proficiency Testing (PT) was subsequently organized using four sets of 24 cell lines, selected from 48 of 50 PS cell lines, to validate the quality of NGS HLA typing data from the 34 participating IHIW laboratories. Completion of the PT program with a minimum score of 95% concordance at the HLA-A, HLA-B, HLA-C, HLA-DRB1 and HLA-DQB1 loci satisfied the requirements to submit NGS HLA typing data for the 17th IHIW projects. Together, these PS and PT efforts constituted the 17th IHIW Quality Control project. Overall PT concordance rates for HLA-A, HLA-B, HLA-C, HLA-DPA1, HLA-DPB1, HLA-DQA1, HLA-DQB1, HLA-DRB1, HLA-DRB3, HLA-DRB4 and HLA-DRB5 were 98.1%, 97.0% and 98.1%, 99.0%, 98.6%, 98.8%, 97.6%, 96.0%, 99.1%, 90.0% and 91.7%, respectively. Across all loci, the majority of the discordance was due to allele dropout. The high cost of NGS HLA genotyping per experiment likely prevented the retyping of initially failed HLA loci. Despite the high HLA genotype concordance rates of the software, there remains room for improvement in the assembly of more accurate consensus DNA sequences by NGS HLA genotyping software
    corecore