9,917 research outputs found

    Phonon, Two-Magnon and Electronic Raman Scattering of Fe1+yTe1-xSex

    Full text link
    We have measured Raman scattering spectra of single-crystalline FeTe0.6Se0.4 (T_c ~ 14.5 K) and its parent compound Fe1.074Te at various temperatures. In the parent compound Fe1.074Te, A1g and B1g modes have been observed at 157.5 and 202.3 cm-1, respectively, at 5 K. These frequencies qualitatively agree with the calculated results. Two-magnon excitation has been observed around 2300 cm-1 for both compounds. Temperature dependence between the electronic Raman spectra below and above T_c has been observed and 2\Delta and 2\Delta/k_BT_C have been estimated as 5.0 meV and 4.0, respectively.Comment: 8 pages, 8 figures, to be published in Phys. Rev.

    Quasi Periodic Oscillations (QPOs) and frequencies in an accretion disk and comparison with the numerical results from non-rotating black hole computed by the GRH code

    Get PDF
    The shocked wave created on the accretion disk after different physical phenomena (accretion flows with pressure gradients, star-disk interaction etc.) may be responsible observed Quasi Periodic Oscillations (QPOs) in XX-ray binaries. We present the set of characteristics frequencies associated with accretion disk around the rotating and non-rotating black holes for one particle case. These persistent frequencies are results of the rotating pattern in an accretion disk. We compare the frequency's from two different numerical results for fluid flow around the non-rotating black hole with one particle case. The numerical results are taken from our papers Refs.\refcite{Donmez2} and \refcite{Donmez3} using fully general relativistic hydrodynamical code with non-selfgravitating disk. While the first numerical result has a relativistic tori around the black hole, the second one includes one-armed spiral shock wave produced from star-disk interaction. Some physical modes presented in the QPOs can be excited in numerical simulation of relativistic tori and spiral waves on the accretion disk. The results of these different dynamical structures on the accretion disk responsible for QPOs are discussed in detail.Comment: 13 figures, added reference, accepted for publication in Modern Physics Letters

    Aging of poled ferroelectric ceramics due to relaxation of random depolarization fields by space-charge accumulation near grain boundaries

    Full text link
    Migration of charged point defects triggered by the local random depolarization field is shown to plausibly explain aging of poled ferroelectric ceramics providing reasonable time and acceptor concentration dependences of the emerging internal bias field. The theory is based on the evaluation of the energy of the local depolarization field caused by mismatch of the polarizations of neighbor grains. The kinetics of charge migration assumes presence of mobile oxygen vacancies in the material due to the intentional or unintentional acceptor doping. Satisfactory agreement of the theory with experiment on the Fe-doped lead zirconate titanate is demonstrated.Comment: theory and experiment, 22 pages, 3 figure

    Semiconductor-enriched single wall carbon nanotube networks applied to field effect transistors

    Full text link
    Substantial progress on field effect transistors "FETs" consisting of semiconducting single wall carbon nanotubes "s-SWNTs" without detectable traces of metallic nanotubes and impurities is reported. Nearly perfect removal of metallic nanotubes is confirmed by optical absorption, Raman measurements, and electrical measurements. This outstanding result was made possible in particular by ultracentrifugation (150 000 g) of solutions prepared from SWNT powders using polyfluorene as an extracting agent in toluene. Such s-SWNTs processable solutions were applied to realize FET, embodying randomly or preferentially oriented nanotube networks prepared by spin coating or dielectrophoresis. Devices exhibit stable p-type semiconductor behavior in air with very promising characteristics. The on-off current ratio is 10^5, the on-current level is around 10 μ\muA, and the estimated hole mobility is larger than 2 cm2 / V s

    Can Any "Invariants" Be Revealed in Quasi-periodic Phenomena Observed From Sco X-1?

    Full text link
    Using large number of Rossi X-ray Time Explorer observations of Sco X-1 we present a detailed investigation of the transition layer (TL) and the relativistic precession (RP) models. These models predict the existence of the invariant quantities: an inclination angle delta of the magnetospheric axis with the normal to the disk for the TLM and a neutron star (NS) mass M_{NS} for the RPM. Theoretical predictions of both models are tested and their self-consistency is checked. We establish that: (1) The inferred delta angle is 5.56+/-0.09 degrees. Correlation of the delta-values with the horizontal branch oscillation (HBO) frequency is rather weak. (2) There is a strong correlation between an inferred M_{NS} and the HBO frequency in the RPM frameworks. (3) We infer M_{NS} for different assumptions regarding the relations between the HBO frequency and the nodal frequency. We find that the inferred M_{NS}=2.7+/-0.1 M_sun cannot be consistent with any EOS of NS matter. We conclude that RPM fails to describe the data while TLM seems to be compatible.Comment: Accepted for publication in Astrophysical Journal Letters (2002 June/571 issue), 5 pages, 4 figures, uses emulateapj5.st

    High-dispersion spectroscopic monitoring of the Be/X-ray binary A0535+26/V725 Tau I: The long-term profile variability

    Full text link
    We report on optical high-dispersion spectroscopic monitoring observations of the Be/X-ray binary A0535+26/V725 Tau, carried out from November 2005 to March 2009. The main aim of these monitoring observations is to study spectral variabilities in the Be disc, on both the short (a week or so) and long (more than hundreds of days) timescales, by taking long-term frequent observations. Our four-year spectroscopic observations indicate that the V/R ratio, i.e., the relative intensity of the violet (V) peak to the red (R) one, of the double-peaked H-alpha line profile varies with a period of 500 days. The H-beta line profile also varies in phase with the H-alpha profile. With these observations covering two full cycles of the V/R variability, we reconstruct the 2-D structure of the Be disc by applying the Doppler tomography method to the H-alpha and H-beta emission line profiles, using a rigidly rotating frame with the V/R variability period. The resulting disc structure reveals non-axisymmetric features, which can be explained by a one-armed perturbation in the Be disc. It is the first time that an eccentric disc structure is directly detected by using a method other than the interferometric one.Comment: (10 pages, 9 figures, accepted to MNRAS

    Competition between unconventional superconductivity and incommensurate antiferromagnetic order in CeRh1-xCoxIn5

    Full text link
    Elastic neutron diffraction measurements were performed on the quasi-two dimensional heavy fermion system CeRh1-xCoxIn5, ranging from an incommensurate antiferromagnet for low x to an unconventional superconductor on the Co-rich end of the phase diagram. We found that the superconductivity competes with the incommensurate antiferromagnetic (AFM) order characterized by qI=(1/2, 1/2, delta) with delta=0.298, while it coexists with the commensurate AFM order with qc=(1/2, 1/2, 1/2). This is in sharp contrast to the CeRh1-xIrxIn5 system, where both the commensurate and incommensurate magnetic orders coexist with the superconductivity. These results reveal that particular areas on the Fermi surface nested by qI play an active role in forming the superconducting state in CeCoIn5.Comment: RevTeX4, 4 pages, 4 eps figures; corrected a typo and a referenc
    corecore