Quasi Periodic Oscillations (QPOs) and frequencies in an accretion disk
and comparison with the numerical results from non-rotating black hole
computed by the GRH code
The shocked wave created on the accretion disk after different physical
phenomena (accretion flows with pressure gradients, star-disk interaction etc.)
may be responsible observed Quasi Periodic Oscillations (QPOs) in X−ray
binaries. We present the set of characteristics frequencies associated with
accretion disk around the rotating and non-rotating black holes for one
particle case. These persistent frequencies are results of the rotating pattern
in an accretion disk. We compare the frequency's from two different numerical
results for fluid flow around the non-rotating black hole with one particle
case. The numerical results are taken from our papers Refs.\refcite{Donmez2}
and \refcite{Donmez3} using fully general relativistic hydrodynamical code with
non-selfgravitating disk. While the first numerical result has a relativistic
tori around the black hole, the second one includes one-armed spiral shock wave
produced from star-disk interaction. Some physical modes presented in the QPOs
can be excited in numerical simulation of relativistic tori and spiral waves on
the accretion disk. The results of these different dynamical structures on the
accretion disk responsible for QPOs are discussed in detail.Comment: 13 figures, added reference, accepted for publication in Modern
Physics Letters