89 research outputs found

    Comparison of six antibody assays and two combination assays for COVID-19

    Get PDF
    [Introduction] In this work, six SARS-CoV-2-specific antibody assays were evaluated, namely, two pan-immunoglobulin (pan-Ig) assays [Roche Elecsys Anti-SARS-CoV-2 (named "Elecsys" in this study) and the PerkinElmer SuperFlex™ Anti-SARS-CoV-2 Ab Assay (SuperFlex_Ab)], two IgM assays [SuperFlex™ Anti-SARS-CoV-2 IgM Assay (SuperFlex_IgM) and YHLO iFlash-SARS-CoV-2 IgM (iFlash_IgM)], and two IgG assays [SuperFlex™ Anti-SARS-CoV-2 IgG Assay (SuperFlex_IgG) and iFlash-SARS-CoV-2 IgG (iFlash_IgG)]. Combination assays of SuperFlex™ (SuperFlex_any) and iFlash (iFlash_any) were also evaluated. [Methods] A total of 438 residual serum samples from 54 COVID-19 patients in the COVID-19 group and 100 samples from individuals without evidence of SARS-CoV-2 infection in the negative control group were evaluated. [Results] In the early stage of COVID-19 infection, within 14 days of symptom onset, the seropositive rate was lower than that of the late stage 15 days after onset (65.4% vs 99.6%). In the total period, the pan-Ig and IgG assays had higher sensitivity (90.8–95.3%) than the IgM assays (36.5–40.7%). SuperFlex_Ab and SuperFlex_any had higher sensitivity than Elecsys and SuperFlex_IgG (p < 0.05). The specificity of all the assays was 100%, except for SuperFlex_IgM (99.0%). The concordance rate between each assay was higher (96.4–100%) in the late stage than in the early stage (77.4–98.1%). [Conclusion] For the purpose of COVID-19 diagnosis, antibody testing should be performed 15 days after onset. For the purpose of epidemiological surveillance, highly sensitive assays should be used as much as possible, such as SuperFlex_Ab, iFlash_IgG and their combination. IgM assays were not suitable for these purposes

    Prenatal diagnosis of severe mitochondrial diseases caused by nuclear gene defects: a study in Japan

    Get PDF
    Prenatal diagnoses of mitochondrial diseases caused by defects in nuclear DNA (nDNA) or mitochondrial DNA have been reported in several countries except for Japan. The present study aimed to clarify the status of prenatal genetic diagnosis of mitochondrial diseases caused by nDNA defects in Japan. A comprehensive genomic analysis was performed to diagnose more than 400 patients, of which, 13 families (16 cases) had requested prenatal diagnoses. Eight cases diagnosed with wild type homozygous or heterozygous variants same as either of the heterozygous parents continued the pregnancy and delivered healthy babies. Another eight cases were diagnosed with homozygous, compound heterozygous, or hemizygous variants same as the proband. Of these, seven families chose to terminate the pregnancy, while one decided to continue the pregnancy. Neonatal- or infantile-onset mitochondrial diseases show severe phenotypes and lead to lethality. Therefore, such diseases could be candidates for prenatal diagnosis with careful genetic counseling, and prenatal testing could be a viable option for families

    Class IA Phosphatidylinositol 3-Kinase in Pancreatic β Cells Controls Insulin Secretion by Multiple Mechanisms

    Get PDF
    SummaryType 2 diabetes is characterized by insulin resistance and pancreatic β cell dysfunction, the latter possibly caused by a defect in insulin signaling in β cells. Inhibition of class IA phosphatidylinositol 3-kinase (PI3K), using a mouse model lacking the pik3r1 gene specifically in β cells and the pik3r2 gene systemically (βDKO mouse), results in glucose intolerance and reduced insulin secretion in response to glucose. β cells of βDKO mice had defective exocytosis machinery due to decreased expression of soluble N-ethylmaleimide attachment protein receptor (SNARE) complex proteins and loss of cell-cell synchronization in terms of Ca2+ influx. These defects were normalized by expression of a constitutively active form of Akt in the islets of βDKO mice, preserving insulin secretion in response to glucose. The class IA PI3K pathway in β cells in vivo is important in the regulation of insulin secretion and may be a therapeutic target for type 2 diabetes

    Impact of serum retinol-binding protein 4 levels on regulation of remnant-like particles triglyceride in type 2 diabetes mellitus

    Get PDF
    Background. Although retinol-binding protein 4 (RBP4) associates with insulin resistance and remnant-like particles triglyceride (RLP-TG) elevated in the insulin resistant state, few data exist regarding the relationship between RBP4 and RLP-TG. Subjects and Methods. The study included 92 Japanese type 2 diabetic mellitus (T2DM) male patients (age 60.5 ± 13.6 years, body mass index (BMI) 24.7 ± 4.1 kg/m2, waist circumference (WC) 88.4 ± 10.7 cm, and HbA1c (NGSP) 7.2 ± 1.9 %). Patients on medications affecting insulin sensitivity, including fibrates, biguanides, and thiazolidinedione, were excluded. Visceral fat area (VFA) and subcutaneous fat area (SFA) were measured by computed tomography. Results. RBP4 levels showed a significant positive correlation with RLP-TG (r = 0.2544 and P = 0.0056), TG (r = 0.1852 and P = 0.041), RLP-TG/TG (r = 0.23765 and P = 0.0241), and age (r = - 0.2082 and P = 0.0219), although there was no significant correlation with VFA, SFA, adiponectin levels, or homeostasis model of assessment insulin resistance (HOMA-R). Multiple regression analysis revealed that RBP4 was an independent determinant of RLP-TG (P = 0.0193) but was not a determinant of TG. Conclusions. RBP4 correlates positively with serum RLP-TG independent of fat accumulation in T2DM. RBP4 may regulate remnant metabolism independent of glycemic control in T2DM. © 2013 Naoto Yamaaki et al

    Clinical Study Impact of Serum Retinol-Binding Protein 4 Levels on Regulation of Remnant-Like Particles Triglyceride in Type 2 Diabetes Mellitus

    Get PDF
    Background. Although retinol-binding protein 4 (RBP4) associates with insulin resistance and remnant-like particles triglyceride (RLP-TG) elevated in the insulin resistant state, few data exist regarding the relationship between RBP4 and RLP-TG. Subjects and Methods. The study included 92 Japanese type 2 diabetic mellitus (T2DM) male patients (age 60.5 ± 13.6 years, body mass index (BMI) 24.7±4.1 kg/m 2 , waist circumference (WC) 88.4±10.7 cm, and HbA1c (NGSP) 7.2±1.9%). Patients on medications affecting insulin sensitivity, including fibrates, biguanides, and thiazolidinedione, were excluded. Visceral fat area (VFA) and subcutaneous fat area (SFA) were measured by computed tomography. Results. RBP4 levels showed a significant positive correlation with RLP-TG ( = 0.2544 and = 0.0056), TG ( = 0.1852 and = 0.041), RLP-TG/TG ( = 0.23765 and = 0.0241), and age ( = −0.2082 and = 0.0219), although there was no significant correlation with VFA, SFA, adiponectin levels, or homeostasis model of assessment insulin resistance (HOMA-R). Multiple regression analysis revealed that RBP4 was an independent determinant of RLP-TG ( = 0.0193) but was not a determinant of TG. Conclusions. RBP4 correlates positively with serum RLP-TG independent of fat accumulation in T2DM. RBP4 may regulate remnant metabolism independent of glycemic control in T2DM
    corecore