85 research outputs found

    Model-free two-step design for improving transient learning performance in nonlinear optimal regulator problems

    Full text link
    Reinforcement learning (RL) provides a model-free approach to designing an optimal controller for nonlinear dynamical systems. However, the learning process requires a considerable number of trial-and-error experiments using the poorly controlled system, and accumulates wear and tear on the plant. Thus, it is desirable to maintain some degree of control performance during the learning process. In this paper, we propose a model-free two-step design approach to improve the transient learning performance of RL in an optimal regulator design problem for unknown nonlinear systems. Specifically, a linear control law pre-designed in a model-free manner is used in parallel with online RL to ensure a certain level of performance at the early stage of learning. Numerical simulations show that the proposed method improves the transient learning performance and efficiency in hyperparameter tuning of RL

    The monoclonal antibody nBT062 conjugated to maytansinoids has potent and selective cytotoxicity against CD138 positive multiple myeloma cells _in vitro_ and _in vivo_

    Get PDF
    CD138 (Syndecan1) is highly expressed on multiple myeloma (MM) cells. In this study, we examined the anti-MM effect of murine/human chimeric CD138-specific monoclonal antibody (mAb) nBT062 conjugated with highly cytotoxic maytansinoid derivatives _in vitro_ and _in vivo_. These agents significantly inhibited growth of CD138-positive MM cell lines and primary tumor cells from MM patients, without cytotoxicity against peripheral blood mononuclear cells from healthy volunteers. In MM cells, they induced G2/M cell cycle arrest followed by apoptosis associated with cleavage of PARP and caspase-3, -8 and -9. Non-conjugated nBT062 completely blocked cytotoxicity induced by nBT062-maytansinoid conjugate, confirming that binding is required for inducing cytotoxicity. Moreover, nBT062-maytansinoid conjugates blocked adhesion of MM cells to bone marrow stromal cells (BMSCs). Co-culture of MM cells with BMSCs, which protects against dexamethasone-induced death, had no impact on the cytotoxicity of the immunoconjugates. Importantly, nBT062-SPDB-DM4 and nBT062-SPP-DM1 significantly inhibited MM tumor growth _in vivo_ in both human multiple myeloma xenograft mouse models and in SCID-human bone grafts (SCID-hu mouse model). These studies provide the preclinical framework supporting evaluation of nBT062-maytansinoid derivatives in clinical trials to improve patient outcome in MM

    Retraction: Fatty acid synthase is a novel therapeutic target in multiple myeloma

    Get PDF
    This study investigated the biological significance of the inhibition of fatty acid synthase (FAS) in multiple myeloma (MM) using the small molecule inhibitor Cerulenin. Cerulenin triggered growth inhibition in both MM cell lines and MM patient cells, and overcame the survival and growth advantages conferred by interleukin-6, insulin-like growth factor-1, and bone marrow stromal cells. It induced apoptosis in MM cell lines with only modest activation of caspase -8, -9, -3 and PARP; moreover, the pan-caspase inhibitor Z-VAD-FMK did not inhibit Cerulenin-induced apoptosis and cell death. In addition, treatment of MM cells with Cerulenin primarily up-regulated apoptosis-inducing factor/endonuclease G, mediators of caspase-independent apoptosis. Importantly, Cerulenin induced endoplasmic reticulum stress response via up-regulation of the Grp78/IRE1α/JNK pathway. Although the C-Jun-NH2-terminal kinase (JNK) inhibitor SP600215 blocked Cerulenin-induced cytotoxicity, it did not inhibit apoptosis and caspase cleavage. Furthermore, Cerulenin showed synergistic cytotoxic effects with various agents including Bortezomib, Melphalan and Doxorubicin. Our results therefore indicate that inhibition of FAS by Cerulenin primarily triggered caspase-independent apoptosis and JNK-dependent cytotoxicity in MM cells. This report demonstrated that inhibition of FAS has anti-tumour activity against MM cells, suggesting that it represents a novel therapeutic target in MM

    Patient-reported dyspnea and health predict waitlist mortality in patients waiting for lung transplantation in Japan

    Get PDF
    Background: Waitlist mortality due to donor shortage for lung transplantation is a serious problem worldwide. Currently, the selection of recipients in Japan is mainly based on the registration order. Hence, scientific evidence for risk stratification regarding waitlist mortality is urgently needed. We hypothesized that patient-reported dyspnea and health would predict mortality in patients waitlisted for lung transplantation. Methods: We analyzed factors related to waitlist mortality using data of 203 patients who were registered as candidates for lung transplantation from deceased donors. Dyspnea was evaluated using the modified Medical Research Council (mMRC) dyspnea scale, and the health status was determined with St. George's Respiratory Questionnaire (SGRQ). Results: Among 197 patients who met the inclusion criteria, the main underlying disease was interstitial lung disease (99 patients). During the median follow-up period of 572 days, 72 patients died and 96 received lung transplantation (69 from deceased donors). Univariable competing risk analyses revealed that both mMRC dyspnea and SGRQ Total score were significantly associated with waitlist mortality (p = 0.003 and p < 0.001, respectively) as well as age, interstitial lung disease, arterial partial pressure of carbon dioxide, and forced vital capacity. Multivariable competing risk analyses revealed that the mMRC and SGRQ score were associated with waitlist mortality in addition to age and interstitial lung disease. Conclusions: Both mMRC dyspnea and SGRQ score were significantly associated with waitlist mortality, in addition to other clinical variables such as patients' background, underlying disease, and pulmonary function. Patient-reported dyspnea and health may be measured through multi-dimensional analysis (including subjective perceptions) and for risk stratification regarding waitlist mortality

    Boundary states as exact solutions of (vacuum) closed string field theory

    Full text link
    We show that the boundary states are idempotent B*B=B with respect to the star product of HIKKO type closed string field theory. Variations around the boundary state correctly reproduce the open string spectrum with the gauge symmetry. We explicitly demonstrate it for the tachyonic and massless vector modes. The idempotency relation may be regarded as the equation of motion of closed string field theory at a possible vacuum.Comment: 30 pages, 2 figures, v3:regularization improve

    Tissue-Restricted Expression of Nrf2 and Its Target Genes in Zebrafish with Gene-Specific Variations in the Induction Profiles

    Get PDF
    The Keap1-Nrf2 system serves as a defense mechanism against oxidative stress and electrophilic toxicants by inducing more than one hundred cytoprotective proteins, including antioxidants and phase 2 detoxifying enzymes. Since induction profiles of Nrf2 target genes have been studied exclusively in cultured cells, and not in animal models, their tissue-specificity has not been well characterized. In this paper, we examined and compared the tissue-specific expression of several Nrf2 target genes in zebrafish larvae by whole-mount in situ hybridization (WISH). Seven zebrafish genes (gstp1, mgst3b, prdx1, frrs1c, fthl, gclc and hmox1a) suitable for WISH analysis were selected from candidates for Nrf2 targets identified by microarray analysis. Tissue-restricted induction was observed in the nose, gill, and/or liver for all seven genes in response to Nrf2-activating compounds, diethylmaleate (DEM) and sulforaphane. The Nrf2 gene itself was dominantly expressed in these three tissues, implying that tissue-restricted induction of Nrf2 target genes is defined by tissue-specific expression of Nrf2. Interestingly, the induction of frrs1c and gclc in liver and nose, respectively, was quite low and that of hmox1a was restricted in the liver. These results indicate the existence of gene-specific variations in the tissue specificity, which can be controlled by factors other than Nrf2
    corecore