42 research outputs found

    Quantification of uncertainty in coarse-scale relative permeability for reservoir production forecast

    Get PDF
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Oceanographic Data of the 35th Japanese Antarctic Research Expedition from November 1993 to March 1994

    Get PDF
    The results of oceanographic observations on the icebreaker "Shirase" and tidal observations at Syowa Station, Antarctica, are presented in this report. The oceanographic observations were carried out in the summer mission of the 35th Japanese Antarctic Research Expedition (JARE-35) from November 1993 to March 1994. The tidal observation was continued through the winter mission of JARE-34 from February 1992 to January 1993

    Robust and highly efficient hiPSC generation from patient non-mobilized peripheral blood-derived CD34+ cells using the auto-erasable Sendai virus vector

    Get PDF
    Background: Disease modeling with patient-derived induced pluripotent stem cells (iPSCs) is a powerful tool forelucidating the mechanisms underlying disease pathogenesis and developing safe and effective treatments. Patientperipheral blood (PB) cells are used for iPSC generation in many cases since they can be collected with minimuminvasiveness. To derive iPSCs that lack immunoreceptor gene rearrangements, hematopoietic stem and progenitorcells (HSPCs) are often targeted as the reprogramming source. However, the current protocols generally requireHSPC mobilization and/or ex vivo expansion owing to their sparsity at the steady state and low reprogrammingefficiencies, making the overall procedure costly, laborious, and time-consuming.Methods: We have established a highly efficient method for generating iPSCs from non-mobilized PB-derivedCD34+ HSPCs. The source PB mononuclear cells were obtained from 1 healthy donor and 15 patients and werekept frozen until the scheduled iPSC generation. CD34+ HSPC enrichment was done using immunomagnetic beads,with no ex vivo expansion culture. To reprogram the CD34+-rich cells to pluripotency, the Sendai virus vectorSeVdp-302L was used to transfer four transcription factors: KLF4, OCT4, SOX2, and c-MYC. In this iPSC generationseries, the reprogramming efficiencies, success rates of iPSC line establishment, and progression time wererecorded. After generating the iPSC frozen stocks, the cell recovery and their residual transgenes, karyotypes, T cellreceptor gene rearrangement, pluripotency markers, and differentiation capability were examined.Results:We succeeded in establishing 223 iPSC lines with high reprogramming efficiencies from 15 patients with 8 different disease types. Our method allowed the rapid appearance of primary colonies (~ 8 days), all of which were expandable under feeder-free conditions, enabling robust establishment steps with less workload. After thawing, the established iPSC lines were verified to be pluripotency marker-positive and of non-T cell origin. A majority of the iPSC lines were confirmed to be transgene-free, with normal karyotypes. Their trilineage differentiation capability was also verified in a defined in vitro assay.Conclusion:This robust and highly efficient method enables the rapid and cost-effective establishment of transgene-free iPSC lines from a small volume of PB, thus facilitating the biobanking of patient-derived iPSCs and their use for the modeling of various diseases

    Effect of Electrokinetics and Thermodynamic Equilibrium on Low-Salinity Water Flooding for Enhanced Oil Recovery in Sandstone Reservoirs

    No full text
    Wettability alteration (from oil-wet to mixed- or water-wet condition) is the most prominent mechanism in low-salinity water flooding (LSWF) for enhanced oil recovery (EOR) in sandstone reservoirs. Although several factors influence the wettability alteration, many efforts have been made to find the main controlling factor. In this study, the influence of interface properties of sandstone/brine and thermodynamic equilibrium of sandstone minerals were evaluated to understand the wettability alteration during LSWF. A triple-layer surface complexation model built-in PHREEQC was applied to a quartz/brine interface, and the modeling results were verified with zeta potential experimental data. This model was combined with that of kaolinite/brine to predict sandstone/brine interface properties. The measured and predicted sandstone zeta potentials were between those obtained for quartz and kaolinite in the diluted seawater. The predicted surface potential of sandstone together with that of crude oil was used in extended Derjaguin-Landau-Verwey-Overbeek theory to estimate the attractive or repulsive force. Consideration of thermodynamic equilibrium between minerals and solution significantly increased the pH and hence resulted in an increase in negative surface potential in the surface complexation. This provided a strong repulsive force between crude oil and sandstone, thus resulting in a more water-wet condition
    corecore