1,134 research outputs found

    Hidden Yangian symmetry in sigma model on squashed sphere

    Full text link
    We discuss a hidden symmetry of a two-dimensional sigma model on a squashed S^3. The SU(2) current can be improved so that it can be regarded as a flat connection. Then we can obtain an infinite number of conserved non-local charges and show the Yangian algebra by directly checking the Serre relation. This symmetry is also deduced from the coset structure of the squashed sphere. The same argument is applicable to the warped AdS_3 spaces via double Wick rotations.Comment: 11 pages, 1 figure, typos corrected, references adde

    Two Ck1δ transcripts regulated by m6A methylation code for two antagonistic kinases in the control of the circadian clock.

    Get PDF
    Fustin, J.-M., Kojima, R., Itoh, K., Chang, H.-Y., Shiqi, Y., Zhuang, B., . . . Okamura, H. (2018). Two Ck1δ transcripts regulated by m6A methylation code for two antagonistic kinases in the control of the circadian clock. Proceedings of the National Academy of Sciences of the United States of America, 115(23), 5980-5985. doi:10.1073/pnas.172137111

    Rewritable nanoscale oxide photodetector

    Full text link
    Nanophotonic devices seek to generate, guide, and/or detect light using structures whose nanoscale dimensions are closely tied to their functionality. Semiconducting nanowires, grown with tailored optoelectronic properties, have been successfully placed into devices for a variety of applications. However, the integration of photonic nanostructures with electronic circuitry has always been one of the most challenging aspects of device development. Here we report the development of rewritable nanoscale photodetectors created at the interface between LaAlO3 and SrTiO3. Nanowire junctions with characteristic dimensions 2-3 nm are created using a reversible AFM writing technique. These nanoscale devices exhibit a remarkably high gain for their size, in part because of the large electric fields produced in the gap region. The photoconductive response is gate-tunable and spans the visible-to-near-infrared regime. The ability to integrate rewritable nanoscale photodetectors with nanowires and transistors in a single materials platform foreshadows new families of integrated optoelectronic devices and applications.Comment: 5 pages, 5 figures. Supplementary Information 7 pages, 9 figure

    On the reflection of magnon bound states

    Full text link
    We investigate the reflection of two-particle bound states of a free open string in the light-cone AdS_5 x S^5 string sigma model, for large angular momentum J=J_56 and ending on a D7 brane which wraps the entire AdS_5 and a maximal S^3 of S^5. We use the superspace formalism to analyse fundamental and two-particle bound states in the cases of supersymmetry-preserving and broken-supersymmetry boundaries. We find the boundary S-matrices corresponding to bound states both in the bulk and on the boundary.Comment: 35 pages, v2: few typos and ref corrected, accepted for publication in JHE

    Giant magnons and non-maximal giant gravitons

    Full text link
    We produce the open strings on R×S2\mathbb{R}\times S^{2} that correspond to the solutions of integrable boundary sine-Gordon theory by making use of the NN-magnon solutions provided in \cite{KPV} together with explicit moduli. Relating the two boundary parameters in a special way we describe the scattering of giant magnons with non-maximal Y=0Y=0 giant gravitons and calculate the leading contribution to the associated magnon scattering phase.Comment: 34 pages, 8 figure

    On the perturbative S-matrix of generalized sine-Gordon models

    Full text link
    Motivated by its relation to the Pohlmeyer reduction of AdS_5 x S^5 superstring theory we continue the investigation of the generalized sine-Gordon model defined by SO(N+1)/SO(N) gauged WZW theory with an integrable potential. Extending our previous work (arXiv:0912.2958) we compute the one-loop two-particle S-matrix for the elementary massive excitations. In the N = 2 case corresponding to the complex sine-Gordon theory it agrees with the charge-one sector of the quantum soliton S-matrix proposed in hep-th/9410140. In the case of N > 2 when the gauge group SO(N) is non-abelian we find a curious anomaly in the Yang-Baxter equation which we interpret as a gauge artifact related to the fact that the scattered particles are not singlets under the residual global subgroup of the gauge group

    Liquefied natural gas for the UK: a life cycle assessment

    Get PDF
    PURPOSE: Liquefied natural gas (LNG) is expected to become an important component of the UK’s energy supply because the national hydrocarbon reserves on the continental shelf have started diminishing. However, use of any carbon-based fuel runs counter to mitigation of greenhouse gas emissions (GHGs). Hence, a broad environmental assessment to analyse the import of LNG to the UK is required. METHODS: A cradle to gate life cycle assessment has been carried out of a specific but representative case: LNG imported to the UK from Qatar. The analysis covers the supply chain, from gas extraction through to distribution to the end-user, assuming state-of-the-art facilities and ships. A sensitivity analysis was also conducted on key parameters including the energy requirements of the liquefaction and vaporisation processes, fuel for propulsion, shipping distance, tanker volume and composition of raw gas. RESULTS AND DISCUSSION: All environmental indicators of the CML methodology were analysed. The processes of liquefaction, LNG transport and evaporation determine more than 50% of the cradle to gate global warming potential (GWP). When 1% of the total gas delivered is vented as methane emissions leakage throughout the supply chain, the GWP increases by 15% compared to the GWP of the base scenario. The variation of the GWP increases to 78% compared to the base scenario when 5% of the delivered gas is considered to be lost as vented emissions. For all the scenarios analysed, more than 75% of the total acidification potential (AP) is due to the sweetening of the natural gas before liquefaction. Direct emissions from transport always determine between 25 and 49% of the total eutrophication potential (EP) whereas the operation and maintenance of the sending ports strongly influences the fresh water aquatic ecotoxicity potential (FAETP). CONCLUSIONS: The study highlights long-distance transport of LNG and natural gas processing, including sweetening, liquefaction and vaporisation, as the key operations that strongly affect the life cycle impacts. Those cannot be considered negligible when the environmental burdens of the LNG supply chain are considered. Furthermore, the effect of possible fugitive methane emissions along the supply chain are critical for the impact of operations such as extraction, liquefaction, storage before transport, transport itself and evaporation

    Evolutionary relationships among barley and <i>Arabidopsis</i> core circadian clock and clock-associated genes

    Get PDF
    The circadian clock regulates a multitude of plant developmental and metabolic processes. In crop species, it contributes significantly to plant performance and productivity and to the adaptation and geographical range over which crops can be grown. To understand the clock in barley and how it relates to the components in the Arabidopsis thaliana clock, we have performed a systematic analysis of core circadian clock and clock-associated genes in barley, Arabidopsis and another eight species including tomato, potato, a range of monocotyledonous species and the moss, Physcomitrella patens. We have identified orthologues and paralogues of Arabidopsis genes which are conserved in all species, monocot/dicot differences, species-specific differences and variation in gene copy number (e.g. gene duplications among the various species). We propose that the common ancestor of barley and Arabidopsis had two-thirds of the key clock components identified in Arabidopsis prior to the separation of the monocot/dicot groups. After this separation, multiple independent gene duplication events took place in both monocot and dicot ancestors. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00239-015-9665-0) contains supplementary material, which is available to authorized users

    Interstudy reproducibility of the second generation, Fourier domain optical coherence tomography in patients with coronary artery disease and comparison with intravascular ultrasound: a study applying automated contour detection

    Get PDF
    Recently, Fourier domain OCT (FD-OCT) has been introduced for clinical use. This approach allows in vivo, high resolution (15 micron) imaging with very fast data acquisition, however, it requires brief flushing of the lumen during imaging. The reproducibility of such fast data acquisition under intracoronary flush application is poorly understood. To assess the inter-study variability of FD-OCT and to compare lumen morphometry to the established invasive imaging method, IVUS. 18 consecutive patients with coronary artery disease scheduled for PCI were included. In each target vessel a FD-OCT pullback (MGH system, light source 1,310 nm, 105 fps, pullback speed 20 mm/s) was acquired during brief (3 s) injection of X-ray contrast (flow 3 ml/s) through the guiding catheter. A second pullback was repeated under the same conditions after re-introduction of the FD OCT catheter into the coronary artery. IVUS and OCT imaging was performed in random order. FD-OCT and IVUS pullback data were analyzed using a recently developed software employing semi automated lumen contour and stent strut detection algorithms. Corresponding ROI were matched based on anatomical landmarks such as side branches and/or stent edges. Inter-study variability is presented as the absolute difference between the two pullbacks. FD-OCT showed remarkably good reproducibility. Inter-study variability in native vessels (cohort A) was very low for mean and minimal luminal area (0.10 ± 0.38, 0.19 ± 0.57 mm[superscript 2], respectively). Likewise inter-study variability was very low in stented coronary segments (cohort B) for mean lumen, mean stent, minimal luminal and minimal stent area (0.06 ± 0.08, 0.07 ± 0.10, 0.04 ± 0.09, 0.04 ± 0.10 mm[superscript 2], respectively). Comparison to IVUS morphometry revealed no significant differences. The differences between both imaging methods, OCT and IVUS, were very low for mean lumen, mean stent, minimal luminal and minimal stent area (0.10 ± 0.45, 0.10 ± 0.36, 0.26 ± 0.54, 0.05 ± 0.47 mm[superscript 2], respectively). FD-OCT shows excellent reproducibility and very low inter-study variability in both, native and stented coronary segments. No significant differences in quantitative lumen morphometry were observed between FD-OCT and IVUS. Evaluating these results suggest that FD-OCT is a reliable imaging tool to apply in longitudinal coronary artery disease studie

    Quantum Gravity in 2+1 Dimensions: The Case of a Closed Universe

    Get PDF
    In three spacetime dimensions, general relativity drastically simplifies, becoming a ``topological'' theory with no propagating local degrees of freedom. Nevertheless, many of the difficult conceptual problems of quantizing gravity are still present. In this review, I summarize the rather large body of work that has gone towards quantizing (2+1)-dimensional vacuum gravity in the setting of a spatially closed universe.Comment: 61 pages, draft of review for Living Reviews; comments, criticisms, additions, missing references welcome; v2: minor changes, added reference
    corecore