6,323 research outputs found

    Magnetic properties of the S=1/2S=1/2 distorted diamond chain at T=0

    Full text link
    We explore, at T=0, the magnetic properties of the S=1/2S=1/2 antiferromagnetic distorted diamond chain described by the Hamiltonian {\cal H} = \sum_{j=1}^{N/3}{J_1 ({\bi S}_{3j-1} \cdot {\bi S}_{3j} + {\bi S}_{3j} \cdot {\bi S}_{3j+1}) + J_2 {\bi S}_{3j+1} \cdot {\bi S}_{3j+2} + J_3 ({\bi S}_{3j-2} \cdot {\bi S}_{3j} + {\bi S}_{3j} \cdot {\bi S}_{3j+2})} \allowbreak - H \sum_{l=1}^{N} S_l^z with J1,J2,J3≥0J_1, J_2, J_3\ge0, which well models A3Cu3(PO4)4{\rm A_3 Cu_3 (PO_4)_4} with A=Ca,Sr{\rm A = Ca, Sr}, Bi4Cu3V2O14{\rm Bi_4 Cu_3 V_2 O_{14}} and azurite Cu3(OH)2(CO3)2\rm Cu_3(OH)_2(CO_3)_2. We employ the physical consideration, the degenerate perturbation theory, the level spectroscopy analysis of the numerical diagonalization data obtained by the Lanczos method and also the density matrix renormalization group (DMRG) method. We investigate the mechanisms of the magnetization plateaux at M=Ms/3M=M_s/3 and M=(2/3)MsM=(2/3)M_s, and also show the precise phase diagrams on the (J2/J1,J3/J1)(J_2/J_1, J_3/J_1) plane concerning with these magnetization plateaux, where M=∑l=1NSlzM=\sum_{l=1}^{N} S_l^z and MsM_s is the saturation magnetization. We also calculate the magnetization curves and the magnetization phase diagrams by means of the DMRG method.Comment: 21 pages, 29 figure

    Band-Insulator-Metal-Mott-Insulator transition in the half--filled t−t′t-t^{\prime} ionic-Hubbard chain

    Full text link
    We investigate the ground state phase diagram of the half-filled t−t′t-t^{\prime} repulsive Hubbard model in the presence of a staggered ionic potential Δ\Delta, using the continuum-limit bosonization approach. We find, that with increasing on-site-repulsion UU, depending on the value of the next-nearest-hopping amplitude t′t^{\prime}, the model shows three different versions of the ground state phase diagram. For t′<t∗′t^{\prime} < t^{\prime}_{\ast}, the ground state phase diagram consists of the following three insulating phases: Band-Insulator at U<UcU<U_{c}, Ferroelectric Insulator at UcUcU_{c} U_{c}. For t′>tc′t^{\prime} > t^{\prime}_{c} there is only one transition from a spin gapped metallic phase at UUcU U_{c}. Finally, for intermediate values of the next-nearest-hopping amplitude t∗′<t′<tc′t^{\prime}_{\ast} < t^{\prime} < t^{\prime}_{c} we find that with increasing on-site repulsion, at Uc1U_{c1} the model undergoes a second-order commensurate-incommensurate type transition from a band insulator into a metallic state and at larger Uc2U_{c2} there is a Kosterlitz-Thouless type transition from a metal into a ferroelectric insulator.Comment: 9 pages 3 figure

    Spin-Peierls instability in a quantum spin chain with Dzyaloshinskii-Moriya interaction

    Full text link
    We analysed the ground state energy of some dimerized spin-1/2 transverse XX and Heisenberg chains with Dzyaloshinskii-Moriya (DM) interaction to study the influence of the latter interaction on the spin-Peierls instability. We found that DM interaction may act either in favour of the dimerization or against it. The actual result depends on the dependence of DM interaction on the distortion amplitude in comparison with such dependence for the isotropic exchange interaction.Comment: 12 pages, latex, 3 figure

    {\bf Ï„\tau-Function Evaluation of Gap Probabilities in Orthogonal and Symplectic Matrix Ensembles}

    Full text link
    It has recently been emphasized that all known exact evaluations of gap probabilities for classical unitary matrix ensembles are in fact Ï„\tau-functions for certain Painlev\'e systems. We show that all exact evaluations of gap probabilities for classical orthogonal matrix ensembles, either known or derivable from the existing literature, are likewise Ï„\tau-functions for certain Painlev\'e systems. In the case of symplectic matrix ensembles all exact evaluations, either known or derivable from the existing literature, are identified as the mean of two Ï„\tau-functions, both of which correspond to Hamiltonians satisfying the same differential equation, differing only in the boundary condition. Furthermore the product of these two Ï„\tau-functions gives the gap probability in the corresponding unitary symmetry case, while one of those Ï„\tau-functions is the gap probability in the corresponding orthogonal symmetry case.Comment: AMS-Late

    Algebraic entropy and the space of initial values for discrete dynamical systems

    Full text link
    A method to calculate the algebraic entropy of a mapping which can be lifted to an isomorphism of a suitable rational surfaces (the space of initial values) are presented. It is shown that the degree of the nnth iterate of such a mapping is given by its action on the Picard group of the space of initial values. It is also shown that the degree of the nnth iterate of every Painlev\'e equation in sakai's list is at most O(n2)O(n^2) and therefore its algebraic entropy is zero.Comment: 10 pages, pLatex fil

    Finite-dimensional reductions of the discrete Toda chain

    Full text link
    The problem of construction of integrable boundary conditions for the discrete Toda chain is considered. The restricted chains for properly chosen closure conditions are reduced to the well known discrete Painlev\'e equations dPIIIdP_{III}, dPVdP_{V}, dPVIdP_{VI}. Lax representations for these discrete Painlev\'e equations are found.Comment: Submitted to Jornal of Physics A: Math. Gen., 14 page

    Magnetic properties of the spin S=1/2S=1/2 Heisenberg chain with hexamer modulation of exchange

    Full text link
    We consider the spin-1/2 Heisenberg chain with alternating spin exchange %on even and odd sites in the presence of additional modulation of exchange on odd bonds with period three. We study the ground state magnetic phase diagram of this hexamer spin chain in the limit of very strong antiferromagnetic (AF) exchange on odd bonds using the numerical Lanczos method and bosonization approach. In the limit of strong magnetic field commensurate with the dominating AF exchange, the model is mapped onto an effective XXZXXZ Heisenberg chain in the presence of uniform and spatially modulated fields, which is studied using the standard continuum-limit bosonization approach. In absence of additional hexamer modulation, the model undergoes a quantum phase transition from a gapped string order into the only one gapless L\"uttinger liquid (LL) phase by increasing the magnetic field. In the presence of hexamer modulation, two new gapped phases are identified in the ground state at magnetization equal to 1/3 and 2/3 of the saturation value. These phases reveal themselves also in magnetization curve as plateaus at corresponding values of magnetization. As the result, the magnetic phase diagram of the hexamer chain shows seven different quantum phases, four gapped and three gapless and the system is characterized by six critical fields which mark quantum phase transitions between the ordered gapped and the LL gapless phases.Comment: 21 pages, 5 figures, Journal of Physics: Condensed Matter, 24, 116002, (2012

    Multivortex Solutions of the Weierstrass Representation

    Full text link
    The connection between the complex Sine and Sinh-Gordon equations on the complex plane associated with a Weierstrass type system and the possibility of construction of several classes of multivortex solutions is discussed in detail. We perform the Painlev\'e test and analyse the possibility of deriving the B\"acklund transformation from the singularity analysis of the complex Sine-Gordon equation. We make use of the analysis using the known relations for the Painlev\'{e} equations to construct explicit formulae in terms of the Umemura polynomials which are Ï„\tau-functions for rational solutions of the third Painlev\'{e} equation. New classes of multivortex solutions of a Weierstrass system are obtained through the use of this proposed procedure. Some physical applications are mentioned in the area of the vortex Higgs model when the complex Sine-Gordon equation is reduced to coupled Riccati equations.Comment: 27 pages LaTeX2e, 1 encapsulated Postscript figur
    • …
    corecore