170 research outputs found

    Relationship between the timing of vessel formation and leaf phenology in ten ring-porous and diffuse-porous deciduous tree species

    Get PDF
    The goal of this study is to clarify how different aspects of plant function are coordinated developmentally for species of ring-porous versus diffuse-porous deciduous trees, comparing the timing of leaf phenology and vessel formation in twigs and stems from an ecophysiological viewpoint. Cylindrical stem cores and twigs were collected at intervals from early spring through summer from five ring-porous and five diffuse-porous species in a cool temperate forest, and leaf and vessel formation were observed simultaneously. We found that the first-formed vessels of the year were lignified in twigs around the time of leaf appearance and at or before full leaf expansion of each tree in both groups of species with flush-leaves. Vessels in stems were lignified 2 weeks before to 4 weeks after leaf appearance and before or around full leaf expansion of the tree in ring-porous species. This was significantly earlier than in diffuse-porous species, in which stem vessel lignification was 2–8 weeks after leaf appearance and at or after full leaf expansion of the tree. The timing of vessel formation in twigs compared to stems was significantly earlier in ring-porous species than in diffuse-porous species. Lignification of vessels in stems occurred within 2 weeks of lignification in the twigs of ring-porous species and 2–8 weeks after lignification in twigs of diffuse-porous species. These results indicate the order and time-lag of leaf and vessel formation. Ring-porous species showed intensive leaf/vessel production, whereas diffuse-porous species showed less intensive leaf/vessel production

    成長錐を用いた木片試料採取法の検討 : 道管形成の季節変化を調べる観点から

    Get PDF
    Feature : Impact on Ashiu forest ecosystem due to dee

    iPSC screening for drug repurposing identifies anti‐RNA virus agents modulating host cell susceptibility

    Get PDF
    RNAウイルスの感染を阻害する既存薬の同定 --複数の異なるRNAウイルスに対して宿主細胞の感受性を下げることにより感染を抑制する薬剤--. 京都大学プレスリリース. 2021-04-07.iPS cells in drug screenings for COVID-19. 京都大学プレスリリース. 2021-04-07.Human pathogenic RNA viruses are threats to public health because they are prone to escaping the human immune system through mutations of genomic RNA, thereby causing local outbreaks and global pandemics of emerging or re‐emerging viral diseases. While specific therapeutics and vaccines are being developed, a broad‐spectrum therapeutic agent for RNA viruses would be beneficial for targeting newly emerging and mutated RNA viruses. In this study, we conducted a screen of repurposed drugs using Sendai virus (an RNA virus of the family Paramyxoviridae), with human‐induced pluripotent stem cells (iPSCs) to explore existing drugs that may present anti‐RNA viral activity. Selected hit compounds were evaluated for their efficacy against two important human pathogens: Ebola virus (EBOV) using Huh7 cells and severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) using Vero E6 cells. Selective estrogen receptor modulators (SERMs), including raloxifene, exhibited antiviral activities against EBOV and SARS‐CoV‐2. Pioglitazone, a PPARγ agonist, also exhibited antiviral activities against SARS‐CoV‐2, and both raloxifene and pioglitazone presented a synergistic antiviral effect. Finally, we demonstrated that SERMs blocked entry steps of SARS‐CoV‐2 into host cells. These findings suggest that the identified FDA‐approved drugs can modulate host cell susceptibility against RNA viruses

    <Literature, Film and Culture in Southeast Asia> Twelve Sisters: A Shared Heritage in Cambodia, Laos, and Thailand

    Get PDF
    Edited by YAMAMOTO HiroyukiList of Contributors [v]Acknowledgements [ix]Introduction /YAMAMOTO Hiroyuki [x]1. Cultural Identity and Creative Tourism: The Folktale Nang Sip Song (Twelve Sisters) in the Global Contexts /Trisilpa BOONKHACHORN [1]2. From Folktale to Buddhist Tale: The Twelve Sisters in the Buddhist Tale, Paññāsajātaka in Thailand /Chanwit TUDKEAO [6]3. Shapes of Love in Lao Tradition: The Legend of the Twelve Sisters in Laos /Khamphuy PHOLLURXA [13]4. Being a Good Son is the Greatest Virtue: The Twelve Sisters in the Cambodian National Language Textbook /VAN Sovathana [26]5. Power of Tales: How Narrating Stories Instilled Hope to Survive during the Pol Pot Regime in Cambodia /PAL Vannarirak [33]6. Male Mountain, Female Mountain: Local Topography and Oral Tradition in Laos /HASHIMOTO Sayaka [36]7. Princess Kongrey's Last Wish: Cambodian Utopia in Ly Bun Yim's Puthisen Neang Kongrey /OKADA Tomoko [50]8. Comical Thevada and Feminine Ogre: Innovative Characters Reflecting Modern Thai /HIRAMATSU Hideki [68]9. The Blooming Season: Thai Short Film /Chalida UABUMRUNGJIT [74]10. Aspiring for the Next "Golden Age" /DOUNG Sarakpich [77]11. For the Development of Lao Film: Film Archives and Film Industry in Laos /Dethnakhone LUANGMOVIHANE [88]12. Boosting Passions for Making Stories: The Short Filmmaking Scene in Laos /Athidxay BOUANDAOHEUANG [95

    Postnatal lethality and chondrodysplasia in mice lacking both chondroitin sulfate N-acetylgalactosaminyltransferase-1 and -2

    Get PDF
    Chondroitin sulfate (CS) is a sulfated glycosaminoglycan (GAG) chain. In cartilage, CS plays important roles as the main component of the extracellular matrix (ECM), existing as side chains of the major cartilage proteoglycan, aggrecan. Six glycosyltransferases are known to coordinately synthesize the backbone structure of CS; however, their in vivo synthetic mechanism remains unknown. Previous studies have suggested that two glycosyltransferases, Csgalnact1 (t1) and Csgalnact2 (t2), are critical for initiation of CS synthesis in vitro. Indeed, t1 single knockout mice (t1 KO) exhibit slight dwarfism and a reduction in CS content in cartilage compared with wild-type (WT) mice. To reveal the synergetic roles of t1 and t2 in CS synthesis in vivo, we generated systemic single and double knockout (DKO) mice and cartilage-specific t1 and t2 double knockout (Col2-DKO) mice. DKO mice exhibited postnatal lethality, whereas t2 KO mice showed normal size and skeletal development. Col2-DKO mice survived to adulthood and showed severe dwarfism compared with t1 KO mice. Histological analysis of epiphyseal cartilage from Col2-DKO mice revealed disrupted endochondral ossification, characterized by drastic GAG reduction in the ECM. Moreover, DKO cartilage had reduced chondrocyte proliferation and an increased number of apoptotic chondrocytes compared with WT cartilage. Conversely, primary chondrocyte cultures from Col2-DKO knee cartilage had the same proliferation rate as WT chondrocytes and low GAG expression levels, indicating that the chondrocytes themselves had an intact proliferative ability. Quantitative RT-PCR analysis of E18.5 cartilage showed that the expression levels of Col2a1 and Ptch1 transcripts tended to decrease in DKO compared with those in WT mice. The CS content in DKO cartilage was decreased compared with that in t1 KO cartilage but was not completely absent. These results suggest that aberrant ECM caused by CS reduction disrupted endochondral ossification. Overall, we propose that both t1 and t2 are necessary for CS synthesis and normal chondrocyte differentiation but are not sufficient for all CS synthesis in cartilage

    SARS-CoV-2 disrupts respiratory vascular barriers by suppressing Claudin-5 expression

    Get PDF
    臓器チップ技術を用いて新型コロナウイルスが血管へ侵入するメカニズムを解明 --Claudin-5発現抑制による呼吸器の血管内皮バリア破壊--. 京都大学プレスリリース. 2022-09-22.A study using an organ-on-a-chip reveals a mechanism of SARS-CoV-2 invasion into blood vessels --Disruption of vascular endothelial barrier in respiratory organs by decreasing Claudin-5 expression--. 京都大学プレスリリース. 2022-09-27.In the initial process of coronavirus disease 2019 (COVID-19), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infects respiratory epithelial cells and then transfers to other organs the blood vessels. It is believed that SARS-CoV-2 can pass the vascular wall by altering the endothelial barrier using an unknown mechanism. In this study, we investigated the effect of SARS-CoV-2 on the endothelial barrier using an airway-on-a-chip that mimics respiratory organs and found that SARS-CoV-2 produced from infected epithelial cells disrupts the barrier by decreasing Claudin-5 (CLDN5), a tight junction protein, and disrupting vascular endothelial cadherin–mediated adherens junctions. Consistently, the gene and protein expression levels of CLDN5 in the lungs of a patient with COVID-19 were decreased. CLDN5 overexpression or Fluvastatin treatment rescued the SARS-CoV-2–induced respiratory endothelial barrier disruption. We concluded that the down-regulation of CLDN5 expression is a pivotal mechanism for SARS-CoV-2–induced endothelial barrier disruption in respiratory organs and that inducing CLDN5 expression is a therapeutic strategy against COVID-19
    corecore