6,796 research outputs found

    Dark Matter Annihilation and the PAMELA, FERMI and ATIC Anomalies

    Full text link
    If dark matter (DM) annihilation accounts for the tantalizing excess of cosmic ray electron/positrons, as reported by the PAMELA, ATIC, HESS and FERMI observatories, then the implied annihilation cross section must be relatively large. This results, in the context of standard cosmological models, in very small relic DM abundances that are incompatible with astrophysical observations. We explore possible resolutions to this apparent conflict in terms of non-standard cosmological scenarios; plausibly allowing for large cross sections, while maintaining relic abundances in accord with current observations.Comment: 13 pages, 3 figures; published for publication in Physical Review

    A slow mode wave as a possible source of Pi 2 and associated particle precipitation: a case study

    No full text
    International audienceAn intensification of auroral luminosity referred to as an auroral break-up often accompanies the onset of geomagnetic pulsation (Pi 2) at the dip-equator. One such auroral break-up occurred at 2239 UT on 16 June, 1986, being accompanied by weak substorm activity (AE~50 nT) which was recorded in all-sky image of Syowa Station, Antarctica (66.2°S, 71.8°E in geomagnetic coordinates). The associated Pi 2 magnetic pulsation was detected by a fluxgate magnetometer in the afternoon sector at the dip-equator (Huancayo, Peru; 1.44°N, 355.9° in geomagnetic coordinates; 12.1°S, 75.2°W in geographic coordinates; L=1.00). In spite of the large separation of the two stations in longitude and latitude, the auroral break-up and subsequent luminosity modulation were seen to be correlated with the wave form of the ground Pi 2 pulsation. This occurred in such a way that the luminosity maximum was seen to occur at the phase of maximum amplitudes of Pi 2 wave form. We argue that the observed correlation could be interpreted as indicating a Pi 2-modulation of a field-aligned acceleration of the low energy electrons that may occur near the equator of the midnight magnetosphere

    The O(N) model on a squashed S^3 and the Klebanov-Polyakov correspondence

    Full text link
    We solve the O(N) vector model at large N on a squashed three-sphere with a conformal mass term. Using the Klebanov-Polyakov version of the AdS_4/CFT_3 correspondence we match various aspects of the strongly coupled theory with the physics of the bulk AdS Taub-NUT and AdS Taub-Bolt geometries. Remarkably, we find that the field theory reproduces the behaviour of the bulk free energy as a function of the squashing parameter. The O(N) model is realised in a symmetric phase for all finite values of the coupling and squashing parameter, including when the boundary scalar curvature is negative.Comment: 1+27 pages. 6 figures. LaTeX. References adde

    Prospects for Discovering Supersymmetry at the LHC

    Full text link
    Supersymmetry is one of the best-motivated candidates for physics beyond the Standard Model that might be discovered at the LHC. There are many reasons to expect that it may appear at the TeV scale, in particular because it provides a natural cold dark matter candidate. The apparent discrepancy between the experimental measurement of g_mu - 2 and the Standard model value calculated using low-energy e+ e- data favours relatively light sparticles accessible to the LHC. A global likelihood analysis including this, other electroweak precision observables and B-decay observables suggests that the LHC might be able to discover supersymmetry with 1/fb or less of integrated luminosity. The LHC should be able to discover supersymmetry via the classic missing-energy signature, or in alternative phenomenological scenarios. The prospects for discovering supersymmetry at the LHC look very good.Comment: 8 pages, 11 figure
    • …
    corecore