12,036 research outputs found

    Rescue with an anti-inflammatory peptide of chickens infected H5N1 avian flu

    Get PDF
    Chickens suffering from avian flu caused by H5N1 influenza virus are destined to die within 2 days due to a systemic inflammatory response. Since HVJ infection (1,2) and influenza virus infection (3,4) cause infected cells to activate homologous serum complement, the systemic inflammatory response elicited could be attributed to the unlimited generation of C5a anaphylatoxin of the complement system, which is a causative peptide of serious inflammation. In monkeys inoculated with a lethal dose of LPS (4 mg/kg body weight), inhibition of C5a by an inhibitory peptide termed AcPepA (5) rescued these animals from serious septic shock which would have resulted in death within a day (6). Therefore, we tested whether AcPepA could also have a beneficial effect on chickens with bird flu. On another front, enhanced production of endothelin-1 (ET-1) and the activation of mast cells (MCs) have been implicated in granulocyte sequestration (7). An endothelin receptor derived antisense homology box peptide (8) designated ETR-P1/fl was shown to antagonize endothelin A receptor (ET-A receptor) (9) and reduce such inflammatory responses as endotoxin-shock (10) and hemorrhagic shock (11), thereby suppressing histamine release in the circulation (12). Thus, we also administered ETR-P1/fl to bird flu chickens expecting suppression of a systemic inflammatory response

    High Spectral and Spatial Resolution Observations of the PDR Emission in the NGC2023 Reflection Nebula with SOFIA and APEX

    Full text link
    We have mapped the NGC 2023 reflection nebula in [CII] and CO(11--10) with the heterodyne receiver GREAT on SOFIA and obtained slightly smaller maps in 13CO(3--2), CO(3--2), CO(4--3), CO(6--5), and CO(7--6) with APEX in Chile. We use these data to probe the morphology, kinematics, and physical conditions of the C II region, which is ionized by FUV radiation from the B2 star HD37903. The [CII] emission traces an ellipsoidal shell-like region at a position angle of ~ -50 deg, and is surrounded by a hot molecular shell. In the southeast, where the C II region expands into a dense, clumpy molecular cloud ridge, we see narrow and strong line emission from high-J CO lines, which comes from a thin, hot molecular shell surrounding the [CII] emission. The [CII] lines are broader and show photo evaporating gas flowing into the C II region. Based on the strength of the [13CII] F=2--1 line, the [CII] line appears to be somewhat optically thick over most of the nebula with an optical depth of a few. We model the physical conditions of the surrounding molecular cloud and the PDR emission using both RADEX and simple PDR models. The temperature of the CO emitting PDR shell is ~ 90 -- 120 K, with densities of 10^5 -- 10^6 cm^-3, as deduced from RADEX modeling. Our PDR modeling indicates that the PDR layer where [CII] emission dominates has somewhat lower densities, 10^4 to a few times 10^5 cm^-3Comment: Accepted by A&

    Impeded Growth of Magnetic Flux Bubbles in the Intermediate State Pattern of Type I Superconductors

    Full text link
    Normal state bubble patterns in Type I superconducting Indium and Lead slabs are studied by the high resolution magneto-optical imaging technique. The size of bubbles is found to be almost independent of the long-range interaction between the normal state domains. Under bubble diameter and slab thickness proper scaling, the results gather onto a single master curve. On this basis, in the framework of the "current-loop" model [R.E. Goldstein, D.P. Jackson and A.T. Dorsey, Phys. Rev. Lett. 76, 3818 (1996)], we calculate the equilibrium diameter of an isolated bubble resulting from the competition between the Biot-and-Savart interaction of the Meissner current encircling the bubble and the superconductor-normal interface energy. A good quantitative agreement with the master curve is found over two decades of the magnetic Bond number. The isolation of each bubble in the superconducting matrix and the existence of a positive interface energy are shown to preclude any continuous size variation of the bubbles after their formation, contrary to the prediction of mean-field models.Comment: \'{e}quipe Nanostructures Quantique

    The one-loop renormalization of the MSSM Higgs sector and its application to the neutral scalar Higgs masses

    Get PDF
    The structure of the Higgs sector in the minimal supersymmetric standard model is reviewed at the one-loop level. An on-shell renormalization scheme of the MSSM Higgs sector is presented in detail together with the complete list of formulae for the neutral Higgs masses at the one-loop level. The results of a complete one- loop calculation for the mass spectrum of the neutral MSSM Higgs bosons and the quality of simpler Born-like approximations are discussed for sfermion and gaugino masses in the range of the electroweak scale.Comment: 32 pages, report KA-THEP-5-199

    The CP properties of the lightest Higgs boson with sbottom effects

    Get PDF
    In the framework of the recently proposed gluino-axion model, using the effective potential method and taking into account the top-stop as well as the bottom-sbottom effects, we discuss the CP--properties of the lightest Higgs boson, in particular its CP--odd composition, which can offer new opportunities at collider searches. It is found that although the CP-odd composition of the lightest Higgs increases slightly with the inclusion of the sbottom effects, it never exceeds %0.17 for all values of the renormalization scale Q ranging from top mass to TeV scaleComment: 24 pp, 12 eps fig

    Background light measurements at the DUMAND site

    Get PDF
    Ambient light intensities at the DUMAND site, west of the island of Hawaii were measured around the one photoelectron level. Throughout the water column between 1,500m and 4,700m, a substantial amount of stimulateable bioluminescence is observed with a ship suspended detector. But non-stimulated bioluminescence level is comparable, or less than, K sup 40 background, when measured with a bottom tethered detector typical of a DUMAND optical module

    The Higgs Sector in a U(1)U(1)^\prime Extension of the MSSM

    Full text link
    We consider the Higgs sector in an extension of the MSSM with extra SM singlets, involving an extra U(1)U(1)^\prime gauge symmetry, in which the domain-wall problem is avoided and the effective μ\mu parameter is decoupled from the new gauge boson ZZ^\prime mass. The model involves a rich Higgs structure very different from that of the MSSM. In particular, there are large mixings between Higgs doublets and the SM singlets, significantly affecting the Higgs spectrum, production cross sections, decay modes, existing exclusion limits, and allowed parameter range. Scalars considerably lighter than the LEP2 bound (114 GeV) are allowed, and the range tanβ1\tan \beta \sim 1 is both allowed and theoretically favored. Phenomenologically, we concentrate our study on the lighter (least model-dependent, yet characteristic) Higgs particles with significant SU(2)-doublet components to their wave functions, for the case of no explicit CP violation in the Higgs sector. We consider their spectra, including the dominant radiative corrections to their masses from the top/stop loop. We computed their production cross sections and reexamine the existing exclusion limits at LEP2. We outline the searching strategy for some representative scenarios at a future linear collider. We emphasize that gaugino, Higgsino, and singlino decay modes are indicative of extended models and have been given little attention. We present a comprehensive list of model scenarios in the Appendices.Comment: 49 pages, 17 figure
    corecore