816 research outputs found

    Depth profile photoemission study of thermally diffused Mn/GaAs (001) interfaces

    Full text link
    We have performed a depth profile study of thermally diffused Mn/GaAs (001) interfaces using photoemission spectroscopy combined with Ar+^+-ion sputtering. We found that Mn ion was thermally diffused into the deep region of the GaAs substrate and completely reacted with GaAs. In the deep region, the Mn 2pp core-level and Mn 3dd valence-band spectra of the Mn/GaAs (001) sample heated to 600 ^{\circ}C were similar to those of Ga1x_{1-x}Mnx_xAs, zinc-blende-type MnAs dots, and/or interstitial Mn in tetrahedrally coordinated by As atoms, suggesting that the Mn 3dd states were essentially localized but were hybridized with the electronic states of the host GaAs. Ferromagnetism was observed in the dilute Mn phase.Comment: 5 pages, 4 figure

    Combined approach of density functional theory and quantum Monte Carlo method to electron correlation in dilute magnetic semiconductors

    Full text link
    We present a realistic study for electronic and magnetic properties in dilute magnetic semiconductor (Ga,Mn)As. A multi-orbital Haldane-Anderson model parameterized by density-functional calculations is presented and solved with the Hirsch-Fye quantum Monte Carlo algorithm. Results well reproduce experimental results in the dilute limit. When the chemical potential is located between the top of the valence band and an impurity bound state, a long-range ferromagnetic correlations between the impurities, mediated by antiferromagnetic impurity-host couplings, are drastically developed. We observe an anisotropic character in local density of states at the impurity-bound-state energy, which is consistent with the STM measurements. The presented combined approach thus offers a firm starting point for realistic calculations of the various family of dilute magnetic semiconductors.Comment: 5 pages, 4 figure

    Correlated defects, metal-insulator transition, and magnetic order in ferromagnetic semiconductors

    Full text link
    The effect of disorder on transport and magnetization in ferromagnetic III-V semiconductors, in particular (Ga,Mn)As, is studied theoretically. We show that Coulomb-induced correlations of the defect positions are crucial for the transport and magnetic properties of these highly compensated materials. We employ Monte Carlo simulations to obtain the correlated defect distributions. Exact diagonalization gives reasonable results for the spectrum of valence-band holes and the metal-insulator transition only for correlated disorder. Finally, we show that the mean-field magnetization also depends crucially on defect correlations.Comment: 4 pages RevTeX4, 5 figures include

    Single-Band Model for Diluted Magnetic Semiconductors: Dynamical and Transport Properties and Relevance of Clustered States

    Full text link
    Dynamical and transport properties of a simple single-band spin-fermion lattice model for (III,Mn)V diluted magnetic semiconductors (DMS) is here discussed using Monte Carlo simulations. This effort is a continuation of previous work (G. Alvarez, Phys. Rev. Lett. 89, 277202 (2002)) where the static properties of the model were studied. The present results support the view that the relevant regime of J/t (standard notation) is that of intermediate coupling, where carriers are only partially trapped near Mn spins, and locally ordered regions (clusters) are present above the Curie temperature T_C. This conclusion is based on the calculation of the resistivity vs. temperature, that shows a soft metal to insulator transition near T_C, as well on the analysis of the density-of-states and optical conductivity. In addition, in the clustered regime a large magnetoresistance is observed in simulations. Formal analogies between DMS and manganites are also discussed.Comment: Revtex4, 20 figures. References updated, minor changes to figures and tex

    JSPS-7 Bovine Respiratory Syncytial Virus Infection Enhances Pasteurella multocida Adherence on Respiratory Epithelial Cells

    Get PDF
    Bovine respiratory syncytial virus (BRSV) is a single negative-stranded RNA virus belonging to the Paramyxoviridae family and shows a close genetic relationship with human respiratory syncytial virus (HRSV). BRSV is the primary etiological agent of respiratory disease in calves aged up to 12 months [1]; beef and dairy cattle worldwide [2, 3]. Initial infection by BRSV alter bovine immune system and facilitates secondary infection of the lower respiratory tract by bacteria [1, 4]. Therefore, BRSV is considered to be a causative agent of bovine respiratory disease complex, which results in economic losses to farmers because of the morbidity and mortality in cattle [2, 3]. According to our preliminary findings based on the gene detection from respiratory samples, paired virus and bacteria were detected; Pasteurella multocida (PM) was the most common bacterial agent (unpublished data). PM is common in the nasopharynx of cattle [5, 6], although PM appears to be part of the normal flora, it can contribute to pneumonia when cattle stressed and/or infected by a respiratory virus [7]. However, the interactions between multiple agents associated with BRDC are not clear. Therefore, the aim of this study was to investigate the effect of BRSV infection on PM adherence to respiratory epithelial cells

    Ferromagnetism in magnetically doped III-V semiconductors

    Full text link
    The origin of ferromagnetism in semimagnetic III-V materials is discussed. The indirect exchange interaction caused by virtual electron excitations from magnetic impurity level in the bandgap to the valence band can explain ferromagnetism in GaAs(Mn) no matter samples are degenerated or not. Formation of ferromagnetic clusters and percolation picture of phase transition describes well all available experimental data and allows to predict the Mn-composition dependence of transition temperature in wurtzite (Ga,In,Al)N epitaxial layers.Comment: 4 pages with 3 figure

    Spin interactions of interstitial Mn ions in ferromagnetic GaMnAs

    Full text link
    The recently reported Rutherford backscattering and particle-induced X-ray emission experiments have revealed that in low-temperature MBE grown GaMnAs a significant part of the incorporated Mn atoms occupies tetrahedral interstitial sites in the lattice. Here we study the magnetic properties of these interstitial ions. We show that they do not participate in the hole-induced ferromagnetism. Moreover, Mn interstitial double donors may form pairs with the nearest substitutional Mn acceptors - our calculations evidence that the spins in such pairs are antiferromagnetically coupled by the superexchange. We also show that for the Mn ion in the other, hexagonal, interstitial position (which seems to be the case in the GaMnBeAs samples) the p-d interactions with the holes, responsible for the ferromagnetism, are very much suppressed.Comment: 4 pages, 3 figures, submitted to PR

    Hole spin polarization in GaAlAs:Mn structures

    Full text link
    A self-consistent calculation of the electronic properties of GaAlAs:Mn magnetic semiconductor quantum well structures is performed including the Hartree term and the sp-d exchange interaction with the Mn magnetic moments. The spin polarization density is obtained for several structure configurations. Available experimental results are compared with theory.Comment: 4 page
    corecore