47 research outputs found

    Rice yields enhanced through integrated management of cover crops and phosphate rock in phosphorus-deficient ultisols in West Africa

    Get PDF
    The relatively low solubility and availability of phosphorus (P) from indigenous phosphate rock could be enhanced by legumes in the acid soils of humid forest agroecosystems. Crotalaria micans L. was grown in a screenhouse without P or with P from triple superphosphate (TSP) and Malian Tilemsi Rock P. The P response of 20 cover crops was field-evaluated using TSP and Rock P. In both experiments, the fertilized cover crops were followed by upland rice without mineral N or P application. Mean rice grain yield and agronomic residual P-use efficiency were similar for both P sources. In the field, 1-year fallow treatment of Canavalia ensiformis (velvet bean) supplied with Mali Rock P gave the highest rice grain yield of 3.1 Mg ha-1, more than 180% that of 2-year continuous unfertilized rice (cv. 'WAB 56-50'). Among continuous rice plots, 'NERICA 2' (interspecific rice) supplied with Rock P produced the highest yield (2.0 Mg ha-1), suggesting that 'NERICA 2' might have greater potential to solubilize rock P. Results indicate that when combined with an appropriate legume, indigenous rock-P can release sufficient P to meet the P requirement of the legume and a following upland rice crop in rotation

    Genetic and Physiological Analysis of Iron Biofortification in Maize Kernels

    Get PDF
    BACKGROUND: Maize is a major cereal crop widely consumed in developing countries, which have a high prevalence of iron (Fe) deficiency anemia. The major cause of Fe deficiency in these countries is inadequate intake of bioavailable Fe, where poverty is a major factor. Therefore, biofortification of maize by increasing Fe concentration and or bioavailability has great potential to alleviate this deficiency. Maize is also a model system for genomic research and thus allows the opportunity for gene discovery. Here we describe an integrated genetic and physiological analysis of Fe nutrition in maize kernels, to identify loci that influence grain Fe concentration and bioavailability. METHODOLOGY: Quantitative trait locus (QTL) analysis was used to dissect grain Fe concentration (FeGC) and Fe bioavailability (FeGB) from the Intermated B73 × Mo17 (IBM) recombinant inbred (RI) population. FeGC was determined by ion coupled argon plasma emission spectroscopy (ICP). FeGB was determined by an in vitro digestion/Caco-2 cell line bioassay. CONCLUSIONS: Three modest QTL for FeGC were detected, in spite of high heritability. This suggests that FeGC is controlled by many small QTL, which may make it a challenging trait to improve by marker assisted breeding. Ten QTL for FeGB were identified and explained 54% of the variance observed in samples from a single year/location. Three of the largest FeGB QTL were isolated in sister derived lines and their effect was observed in three subsequent seasons in New York. Single season evaluations were also made at six other sites around North America, suggesting the enhancement of FeGB was not specific to our farm site. FeGB was not correlated with FeGC or phytic acid, suggesting that novel regulators of Fe nutrition are responsible for the differences observed. Our results indicate that iron biofortification of maize grain is achievable using specialized phenotyping tools and conventional plant breeding techniques

    Variability and trait‐specific accessions for grain yield and nutritional traits in germplasm of little millet ( Panicum sumatrense Roth. Ex. Roem. & Schult.)

    Get PDF
    Little millet (Panicum sumatrense Roth. Ex. Roem. & Schult.), a member of the grass family Poaceae, is native to India. It is nutritionally superior to major cereals, grows well on marginal lands, and can withstand drought and waterlogging conditions. Two-hundred diverse little millet landraces were characterized to assess variability for agronomic and nutritional traits and identify promising accessions. Highly significant variabilitywas found for all the agronomic and grain nutrient traits. Accessions of robusta were high yielding whereas those of nana were rich in grain nutrients. About 80% of the accessions showed consistent protein and zinc (Zn) contents whereas iron (Fe) and calcium (Ca) contents were less consistent (29.5 and 63.5%, respectively) over 2 yr. Promising trait-specific accessions were identified for greater seed weight (10 accessions), high grain yield (15), high biomass yield (15), and consistently high grain nutrients (30) over 2 yr (R2 = .69–.74, P ≤ .0001). A few accessions showed consistently high for two or more nutrients (IPmr 449 for Fe, Zn, Ca, and protein; IPmr 981 for Zn and protein). Five accessions (IPmr 855, 974, 877, 897, 767) were high yielding and also rich in Ca. Consumption of 100 g of little millet grains can potentially contribute to the recommended dietary allowance of up to 28% Fe, 37% Zn, and 27% protein. Multilocation evaluation of the promising accessions across different soil types, fertility levels, and climatic conditions would help to identify valuable accessions for direct release as a cultivar or use in little millet improvement

    IITA resource and crop management technologies a synopsis

    No full text

    Legume rotation in the moist tropical savanna: managing soil nitrogen dynamics and cereal yields in farmers' fields

    No full text
    The contribution of root and leaf litter to soil nitrogen dynamics, nitrogen uptake and balance was evaluated under cereal–legume rotations in a tropical moist savanna soil. Two legumes, soyabean (Glycine max) and stylo (Stylosanthes hamata), and maize (Zea mays) as a control were grown in four farmers' fields of different native fertility in 1993. At the end of the season, soyabean grain and stover were harvested and stylo biomass was removed for fodder. At the beginning of the 1994 season levels of total mineral nitrogen at a soil depth of 0–30 cm were 75, 52 and 44 kg ha−1 following soyabean, stylo and maize respectively. Total nitrogen uptake by maize was over 25% higher following legumes than following maize. Maize yield was 20 and 24% higher when grown after stylo and soyabean than after maize in spite of the removal of the standing legume biomass from the plots. Sorghum grain yield and nitrogen uptake were not significantly affected by the previous crops. Nitrogen balance estimates indicated that loss of nitrogen, probably due to leaching, was lowest in the plots previously planted with stylo. Results indicated opportunities to integrate appropriate legume-based technologies into the farming systems based on an identification of inherent nitrogen-release patterns

    Growth and distribution of maize roots under nitrogen fertilization in plinthite soil

    No full text
    To improve efficiency of soil N and water use in the savanna, maize (Zea mays L.) cultivars with improved root systems are required. Two rainfed field experiments were conducted in Samaru, Nigeria in the 1993 and 1994 growing seasons with five maize cultivars under various rates of nitrogen fertilizer. The capacity of maize for rapid early root growth and to later develop a deep, dense root system was assessed. In addition, the effect of N fertilization on root growth of maize was studied in 1994. The widely cultivated cultivar TZB-SR had a poor root system in the surface soil layer and was more susceptible to early-season drought, as indicated by low plant vigor and aboveground dry matter yield during that time. It had a lower grain yield and a relatively small harvest index, but ranked among the highest in total aboveground dry matter production compared to other cultivars. The size of root system alone did not always relate well with grain yield among cultivars. Partitioning of dry matter within the plant was important in determining differences in grain yield and N stress tolerance between cultivars. A semiprolific cultivar (SPL) had high seedling vigour and a dense root system in the surface soil layer that conferred a greater tolerance to early-season drought stress and improved uptake of the early-season N flush, as indicated by a greater dry matter yield at 35 days after sowing (DAS). It also had a fine, deep, dense root system at flowering that could have improved water- and N-use efficiency in the subsoil (> 45 cm), thereby avoiding midseason drought stress in 1994. SPL had a large harvest index and the greatest yield among cultivars in 1994. Averaged across cultivars, greater root growth and distribution was observed at a moderate N rate of 0.56 g plant−1 than at zero-N or high N (2.26 g plant−1). Differences in root morphology could be valuable as selection criteria for N-efficient and drought-tolerant maize
    corecore