146 research outputs found

    Metabolomics approach for determining growth-specific metabolites based on Fourier transform ion cyclotron resonance mass spectrometry

    Get PDF
    Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR/MS) is the best MS technology for obtaining exact mass measurements owing to its great resolution and accuracy, and several outstanding FT-ICR/MS-based metabolomics approaches have been reported. A reliable annotation scheme is needed to deal with direct-infusion FT-ICR/MS metabolic profiling. Correlation analyses can help us not only uncover relations between the ions but also annotate the ions originated from identical metabolites (metabolite derivative ions). In the present study, we propose a procedure for metabolite annotation on direct-infusion FT-ICR/MS by taking into consideration the classification of metabolite-derived ions using correlation analyses. Integrated analysis based on information of isotope relations, fragmentation patterns by MS/MS analysis, co-occurring metabolites, and database searches (KNApSAcK and KEGG) can make it possible to annotate ions as metabolites and estimate cellular conditions based on metabolite composition. A total of 220 detected ions were classified into 174 metabolite derivative groups and 72 ions were assigned to candidate metabolites in the present work. Finally, metabolic profiling has been able to distinguish between the growth stages with the aid of PCA. The constructed model using PLS regression for OD600 values as a function of metabolic profiles is very useful for identifying to what degree the ions contribute to the growth stages. Ten phospholipids which largely influence the constructed model are highly abundant in the cells. Our analyses reveal that global modification of those phospholipids occurs as E. coli enters the stationary phase. Thus, the integrated approach involving correlation analyses, metabolic profiling, and database searching is efficient for high-throughput metabolomics

    Increased endothelin-1 in colorectal cancer and reduction of tumour growth by ET A receptor antagonism

    Get PDF
    Endothelin-1 (ET-1) is a vasoconstrictor peptide which stimulates proliferation in vitro in different cell types, including colorectal cancer cells. Raised ET-1 levels have been detected both on tissue specimens and in the plasma of patients with cancers. To investigate the role of ET-1 in colorectal cancer: (i) ET-1 plasma levels in patients with colorectal cancer were measured by radioimmunoassay: group 1 = controls (n = 22), group 2 = primary colorectal cancer only (n = 39), group 3 = liver metastases only (n = 26); (ii) ET-1 expression in primary colorectal cancer specimens (nβ€ˆ=10) was determined immunohistochemically and (iii) the effect of intraportally infused antagonists to the two ET-1 receptors, ET A and ET B, on the growth of liver metastases in a rat model was assessed. ET-1 plasma levels were significantly increased in both patients with primary tumour and patients with metastases, compared to controls (Pβ€ˆ<β€ˆ0.01, 3.9β€ˆΒ±β€ˆ1.4, 4.5β€ˆΒ±β€ˆ1.5, vs. 2.75β€ˆΒ±β€ˆ1.37β€ˆpg/ml, respectively). Immunohistochemically, strong expression of ET-1 was found in the cytoplasm, stroma and blood vessels of cancers, unlike the normal colon where only the apical layer of the epithelium, vascular endothelial cells and surrounding stroma were positively stained. In the rat model, there was significant reduction in liver tumour weights compared to controls, following treatment with the ET A antagonist (BQ123) 30β€ˆmin after the intraportal inoculation of tumour cells (P < 0.05). These results suggest ET-1 is produced by colorectal cancers and may play a role in the growth of colorectal cancer acting through ET A receptors. ET A antagonists are indicated as potential anti-cancer agents. Β© 2001 Cancer Research Campaign http://www.bjcancer.co

    Transcription profiling of lung adenocarcinomas of c-myc-transgenic mice: Identification of the c-myc regulatory gene network

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The transcriptional regulator c-Myc is the most frequently deregulated oncogene in human tumors. Targeted overexpression of this gene in mice results in distinct types of lung adenocarcinomas. By using microarray technology, alterations in the expression of genes were captured based on a female transgenic mouse model in which, indeed, c-Myc overexpression in alveolar epithelium results in the development of bronchiolo-alveolar carcinoma (BAC) and papillary adenocarcinoma (PLAC). In this study, we analyzed exclusively the promoters of induced genes by different in silico methods in order to elucidate the c-Myc transcriptional regulatory network.</p> <p>Results</p> <p>We analyzed the promoters of 361 transcriptionally induced genes with respect to c-Myc binding sites and found 110 putative binding sites in 94 promoters. Furthermore, we analyzed the flanking sequences (+/- 100 bp) around the 110 c-Myc binding sites and found Ap2, Zf5, Zic3, and E2f binding sites to be overrepresented in these regions. Then, we analyzed the promoters of 361 induced genes with respect to binding sites of other transcription factors (TFs) which were upregulated by c-Myc overexpression. We identified at least one binding site of at least one of these TFs in 220 promoters, thus elucidating a potential transcription factor network. The analysis correlated well with the significant overexpression of the TFs Atf2, Foxf1a, Smad4, Sox4, Sp3 and Stat5a. Finally, we analyzed promoters of regulated genes which where apparently not regulated by c-Myc or other c-Myc targeted TFs and identified overrepresented Oct1, Mzf1, Ppargamma, Plzf, Ets, and HmgIY binding sites when compared against control promoter background.</p> <p>Conclusion</p> <p>Our in silico data suggest a model of a transcriptional regulatory network in which different TFs act in concert upon c-Myc overexpression. We determined molecular rules for transcriptional regulation to explain, in part, the carcinogenic effect seen in mice overexpressing the c-Myc oncogene.</p

    Physical Fitness and Telomere Length in Patients with Coronary Heart Disease: Findings from the Heart and Soul Study

    Get PDF
    Background: Short telomere length (TL) is an independent predictor of mortality in patients with coronary heart disease (CHD). However, the relationship between physical fitness and TL has not been explored in these patients. Methods: In a cross sectional study of 944 outpatients with stable CHD, we performed exercise treadmill testing, assessed self-reported physical activity, and measured leukocyte TL using a quantitative PCR assay. We used generalized linear models to calculate mean TL (T/S ratio), and logistic regression models to compare the proportion of patients with short TL (defined as the lowest quartile), among participants with low, medium and high physical fitness, based on metabolic equivalent tasks achieved (METs). Results: 229 participants had low physical fitness (,5 METS), 334 had moderate physical fitness (5–7 METS), and 381 had high physical fitness (.7 METS). Mean6 T/S ratio ranged from 0.8660.21 (534963781 base pairs) in those with low physical fitness to 0.9560.23 (556663829 base pairs) in those with high physical fitness (p,.001). This association remained strong after adjustment for numerous patient characteristics, including measures of cardiac disease severity and physical inactivity (p = 0.005). Compared with participants with high physical fitness, those with low physical fitness had 2-fold greater odds o

    Molecular dynamics simulations and in silico peptide ligand screening of the Elk-1 ETS domain

    Get PDF
    Background: The Elk-1 transcription factor is a member of a group of proteins called ternary complex factors, which serve as a paradigm for gene regulation in response to extracellular signals. Its deregulation has been linked to multiple human diseases including the development of tumours. The work herein aims to inform the design of potential peptidomimetic compounds that can inhibit the formation of the Elk-1 dimer, which is key to Elk-1 stability. We have conducted molecular dynamics simulations of the Elk-1 ETS domain followed by virtual screening. Results: We show the ETS dimerisation site undergoes conformational reorganisation at the a1b1 loop. Through exhaustive screening of di- and tri-peptide libraries against a collection of ETS domain conformations representing the dynamics of the loop, we identified a series of potential binders for the Elk-1 dimer interface. The di-peptides showed no particular preference toward the binding site; however, the tri-peptides made specific interactions with residues: Glu17, Gln18 and Arg49 that are pivotal to the dimer interface. Conclusions: We have shown molecular dynamics simulations can be combined with virtual peptide screening to obtain an exhaustive docking protocol that incorporates dynamic fluctuations in a receptor. Based on our findings, we suggest experimental binding studies to be performed on the 12 SILE ranked tri-peptides as possible compounds for the design of inhibitors of Elk-1 dimerisation. It would also be reasonable to consider the score ranked tri-peptides as a comparative test to establish whether peptide size is a determinant factor of binding to the ETS domain

    Ets-1 Confers Cranial Features on Neural Crest Delamination

    Get PDF
    Neural crest cells (NCC) have the particularity to invade the environment where they differentiate after separation from the neuroepithelium. This process, called delamination, is strikingly different between cranial and trunk NCCs. If signalings controlling slow trunk delamination start being deciphered, mechanisms leading to massive and rapid cranial outflow are poorly documented. Here, we show that the chick cranial NCCs delamination is the result of two events: a substantial cell mobilization and an epithelium to mesenchyme transition (EMT). We demonstrate that ets-1, a transcription factor specifically expressed in cranial NCCs, is responsible for the former event by recruiting massively cranial premigratory NCCs independently of the S-phase of the cell cycle and by leading the gathered cells to straddle the basal lamina. However, it does not promote the EMT process alone but can cooperate with snail-2 (previously called slug) to this event. Altogether, these data lead us to propose that ets-1 plays a pivotal role in conferring specific cephalic characteristics on NCC delamination

    Survivin, a molecular target for therapeutic interventions in squamous cell carcinoma

    Full text link

    CCN2 YAPs at cancer

    No full text
    The YAP transcription coactivator has been implicated as an oncogene and is amplified in human cancers. Previously, it has been shown that CCN2 (connective tissue growth factor, CTGF) is a target of the tumor promoting YAP and its transcription factor target TEAD. A recent report in Genes and Development by Zhao and colleagues (Genes Dev 22:1962–1971 2008) has extended these initial observations to show that CCN2 plays an important role in the growth-promoting function of YAP. These data confirm the role of CCN2 as a key oncogenic mediator. This report briefly summarizes these findings
    • …
    corecore