39 research outputs found

    Synthetic Mitochondria-Targeting Peptides Incorporating α-Aminoisobutyric Acid with a Stable Amphiphilic Helix Conformation in Plant Cells

    Get PDF
    In the genetic modification of plant cells, the mitochondrion is an important target in addition to the nucleus and plastid. However, gene delivery into the mitochondria of plant cells has yet to be established by conventional methods, such as particle bombardment, because of the small size and high mobility of mitochondria. To develop an efficient mitochondria-targeting signal (MTS) that functions in plant cells, we designed the artificial peptide (LURL)₃ and its analogues, which periodically feature hydrophobic α-aminoisobutyric acid (Aib, U) and cationic arginine (R), considering the consensus motif recognized by the mitochondrial import receptor Tom20. Circular dichroism measurements and molecular dynamics simulation studies revealed that (LURL)₃ had a propensity to form a stable α-helix in 0.1 M phosphate buffer solution containing 1.0 wt % sodium dodecyl sulfate. After internalization into plant cells via particle bombardment, (LURL)₃ revealed highly selective accumulation in the mitochondria, whereas its analogue (LARL)₃ was predominantly located in the vacuoles in addition to mitochondria. The high selectivity of (LURL)₃ can be attributed to the incorporation of Aib, which promotes the hydrophobic interaction between the MTS and Tom20 by increasing the hydrophobicity and helicity of (LURL)₃. The present study provided a prospective mitochondrial targeting system using the simple design of artificial peptides

    Mitochondrial movement during its association with chloroplasts in Arabidopsis thaliana

    Get PDF
    葉緑体との相互作用におけるミトコンドリア運動を発見 --相互作用の制御による効率的な物質代謝の可能性に期待--. 京都大学プレスリリース. 2021-03-19.Plant mitochondria move dynamically inside cells and this movement is classified into two types: directional movement, in which mitochondria travel long distances, and wiggling, in which mitochondria travel short distances. However, the underlying mechanisms and roles of both types of mitochondrial movement, especially wiggling, remain to be determined. Here, we used confocal laser-scanning microscopy to quantitatively characterize mitochondrial movement (rate and trajectory) in Arabidopsis thaliana mesophyll cells. Directional movement leading to long-distance migration occurred at high speed with a low angle-change rate, whereas wiggling leading to short-distance migration occurred at low speed with a high angle-change rate. The mean square displacement (MSD) analysis could separate these two movements. Directional movement was dependent on filamentous actin (F-actin), whereas mitochondrial wiggling was not, but slightly influenced by F-actin. In mesophyll cells, mitochondria could migrate by wiggling, and most of these mitochondria associated with chloroplasts. Thus, mitochondria migrate via F-actin-independent wiggling under the influence of F-actin during their association with chloroplasts in Arabidopsis

    Sucrose starvation induces microautophagy in plant root cells

    Get PDF
    Abstract Autophagy is an essential system for degrading and recycling cellular components for survival during starvation conditions. Under sucrose starvation, application of a papain protease inhibitor E-64d to the Arabidopsis root and tobacco BY-2 cells induced the accumulation of vesicles, labeled with a fluorescent membrane marker FM4-64. The E-64d-induced vesicle accumulation was reduced in the mutant defective in autophagy-related genes ATG2, ATG5, and ATG7, suggesting autophagy is involved in the formation of these vesicles. To clarify the formation of these vesicles in detail, we monitored time-dependent changes of tonoplast, and vesicle accumulation in sucrose-starved cells. We found that these vesicles were derived from the tonoplast and produced by microautophagic process. The tonoplast proteins were excluded from the vesicles, suggesting that the vesicles are generated from specific membrane domains. Concanamycin A treatment in GFP-ATG8a transgenic plants showed that not all FM4-64-labeled vesicles, which were derived from the tonoplast, contained the ATG8a-containing structure. These results suggest that ATG8a may not always be necessary for microautophagy.This study was supported by the National Science Centre, Poland [UMO-2016/21/P/NZ9/01089 to SG-Y (the project has received funding from the European Union's Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement no. 665778) and UMO-2016/23/B/NZ1/01847 to KeY]; the Foundation for Polish Science (TEAM/2017-4/41 to KeY); KAKENHI from the Japan Society for the Promotion of Science, Japan (JP15J40032 to SG-Y, JP17K07457 to SM, and JP15H05776 to IH-N); and KAKENHI from the Ministry of Education, Culture, Sports, Science and Technology, Japan (JP26111523 to SG-Y); as well as the institutional support provided from the National Institute for Basic Biology (NIBB), Kyoto University, and Małopolska Centre of Biotechnology, Jagiellonian University. Next-generation sequencing was supported by NIBB Collaborative Research Programs 11-711

    Pexophagy suppresses ROS-induced damage in leaf cells under high-intensity light

    Get PDF
    Although light is essential for photosynthesis, it has the potential to elevate intracellular levels of reactive oxygen species (ROS). Since high ROS levels are cytotoxic, plants must alleviate such damage. However, the cellular mechanism underlying ROS-induced leaf damage alleviation in peroxisomes was not fully explored. Here, we show that autophagy plays a pivotal role in the selective removal of ROS-generating peroxisomes, which protects plants from oxidative damage during photosynthesis. We present evidence that autophagy-deficient mutants show light intensity-dependent leaf damage and excess aggregation of ROS-accumulating peroxisomes. The peroxisome aggregates are specifically engulfed by pre-autophagosomal structures and vacuolar membranes in both leaf cells and isolated vacuoles, but they are not degraded in mutants. ATG18a-GFP and GFP-2×FYVE, which bind to phosphatidylinositol 3-phosphate, preferentially target the peroxisomal membranes and pre-autophagosomal structures near peroxisomes in ROS-accumulating cells under high-intensity light. Our findings provide deeper insights into the plant stress response caused by light irradiation

    Native protein delivery into rice callus using ionic complexes of protein and cell-penetrating peptides.

    No full text
    Direct protein delivery into intact plants remains a challenge for the agricultural and plant science fields. Cell-penetrating peptide (CPP)-mediated protein delivery requires the binding of CPPs to a protein to carry the protein into the cell through the cell wall and lipid bilayer. Thus, we prepared ionic complexes of a CPP-containing carrier peptide and a cargo protein, namely, Citrine yellow fluorescent protein, and subsequently studied their physicochemical properties. Two types of carrier peptides, BP100(KH)9 and BP100CH7, were investigated for delivery efficiency into rice callus. Both BP100(KH)9 and BP100CH7 successfully introduced Citrine protein into rice callus cells under pressure and vacuum treatment. Moreover, delivery efficiency varied at different growth stages of rice callus; 5-day rice callus was a more efficient recipient for Citrine than 21-day callus

    Binding of Tau-derived peptide-fused GFP to plant microtubules in Arabidopsis thaliana.

    Get PDF
    Studies on how exogenous molecules modulate properties of plant microtubules, such as their stability, structure, and dynamics, are important for understanding and modulating microtubule functions in plants. We have developed a Tau-derived peptide (TP) that binds to microtubules and modulates their properties by binding of TP-conjugated molecules in vitro. However, there was no investigation of TPs on microtubules in planta. Here, we generated transgenic Arabidopsis thaliana plants stably expressing TP-fused superfolder GFP (sfGFP-TP) and explored the binding properties and effects of sfGFP-TP on plant microtubules. Our results indicate that the expressed sfGFP-TP binds to the plant microtubules without inhibiting plant growth. A transgenic line strongly expressing sfGFP-TP produced thick fibrous structures that were stable under conditions where microtubules normally depolymerize. This study generates a new tool for analyzing and modulating plant microtubules
    corecore