10 research outputs found
Quantitative C-13 Multicp Solid-state Nmr As A Tool For Evaluation Of Cellulose Crystallinity Index Measured Directly Inside Sugarcane Biomass
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Background: The crystallinity index (CI) is often associated with changes in cellulose structure after biological and physicochemical pretreatments. While some results obtained with lignocellulosic biomass demonstrate a progressive increase in the CI as a function of pretreatments, it is also shown that the CI can significantly vary depending on the choice of the measurement method. Besides, the influence of the CI on the recalcitrance of biomass has been controversial for a long time, but the most recent results tend to point out that the efficiency of pretreatments in reducing the recalcitrance is not clearly correlated with the decrease of the CI. Much of this controversy is somewhat associated with the inability to distinguish between the CI of the cellulose inside the biomass and the CI of the full biomass, which contains other amorphous components such as lignin and hemicellulose. Results: Cross polarization by multiple contact periods (Multi-CP) method was used to obtain quantitative C-13 solid-state nuclear magnetic resonance (ssNMR) spectra of sugarcane bagasse biomass submitted to two-step pretreatments and/or enzymatic hydrolysis. By comparing the dipolar filtered Multi-CP C-13 NMR spectra of untreated bagasse samples with those of samples submitted to acid pretreatment, we show that a 1% H2SO4-assisted pretreatment was very effective in removing practically all the hemicellulose signals. This led us to propose a spectral editing procedure based on the subtraction of MultiCP spectra of acid-treated biomass from that of the extracted lignin, to obtain a virtually pure cellulose spectrum. Based on this idea, we were able to evaluate the CI of the native cellulose inside the sugarcane bagasse biomass. Conclusions: The results show the validity of the proposed method as a tool for evaluating the variations in the CI of the cellulose inside biomasses of similar kinds. Despite a clear increase in the CI of biomass as measured by X-ray diffraction, no significant variations were observed in the CI of the cellulose inside the biomass after a particular 1% H2SO4/0.25-4% NaOH chemical-assisted pretreatments. The CI of cellulose inside the biomass solid fraction that remained after the enzymatic hydrolysis was also evaluated. The results show a slight increase in crystallinity.8Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)USP via NAP Centro de Instrumentacao para Estudos Avancados de Materiais Nanoestruturados e BiossistemasUSP via NAP de Bioenergia e SustentabilidadeEuropean Community's Seventh Framework Programme SUNLIBB (FP7) [251132]Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)CNPq [312852/2014-2, 306767/2011-2, 159341/2011 6, 482166/2010 0, 306767/2011 2, 490022/2009 0
Quantitative (13)c Multicp Solid-state Nmr As A Tool For Evaluation Of Cellulose Crystallinity Index Measured Directly Inside Sugarcane Biomass.
The crystallinity index (CI) is often associated with changes in cellulose structure after biological and physicochemical pretreatments. While some results obtained with lignocellulosic biomass demonstrate a progressive increase in the CI as a function of pretreatments, it is also shown that the CI can significantly vary depending on the choice of the measurement method. Besides, the influence of the CI on the recalcitrance of biomass has been controversial for a long time, but the most recent results tend to point out that the efficiency of pretreatments in reducing the recalcitrance is not clearly correlated with the decrease of the CI. Much of this controversy is somewhat associated with the inability to distinguish between the CI of the cellulose inside the biomass and the CI of the full biomass, which contains other amorphous components such as lignin and hemicellulose. Cross polarization by multiple contact periods (Multi-CP) method was used to obtain quantitative (13)C solid-state nuclear magnetic resonance (ssNMR) spectra of sugarcane bagasse biomass submitted to two-step pretreatments and/or enzymatic hydrolysis. By comparing the dipolar filtered Multi-CP (13)C NMR spectra of untreated bagasse samples with those of samples submitted to acid pretreatment, we show that a 1% H2SO4-assisted pretreatment was very effective in removing practically all the hemicellulose signals. This led us to propose a spectral editing procedure based on the subtraction of MultiCP spectra of acid-treated biomass from that of the extracted lignin, to obtain a virtually pure cellulose spectrum. Based on this idea, we were able to evaluate the CI of the native cellulose inside the sugarcane bagasse biomass. The results show the validity of the proposed method as a tool for evaluating the variations in the CI of the cellulose inside biomasses of similar kinds. Despite a clear increase in the CI of biomass as measured by X-ray diffraction, no significant variations were observed in the CI of the cellulose inside the biomass after a particular 1% H2SO4/0.25-4% NaOH chemical-assisted pretreatments. The CI of cellulose inside the biomass solid fraction that remained after the enzymatic hydrolysis was also evaluated. The results show a slight increase in crystallinity.811
Characterization of lignocellulosic biomass using solid-state nuclear magnetic resonance techniques
Nesta tese, a ressonância magnética nuclear do estado sólido (SSNMR) foi utilizada para estudar a composição química e estrutura dos componentes da parede celular de plantas. Visando contribuir no desenvolvimento de estratégias de despolimerização da biomassa, SSNMR foi inicialmente utilizada para estudar efeitos dos pré-tratamentos químicos e físicos, e da ação de enzimas sobre algumas biomassas. Os resultados mostraram que, em baixas concentrações, tratamentos ácidos são altamente efetivos na remoção das frações de hemicelulose, com pouco efeito nas frações de lignina e celulose. Já tratamentos alcalinos promovem eficiente deslignificação da biomassa, sendo que a mínima concentração da solução alcalina necessária para obter a máxima deslignificação depende do tipo de biomassa e da temperatura do tratamento. Os estudos por SSNMR foram correlacionados com estudos por outras técnicas, contribuindo para um entendimento mais profundo sobre o efeito dos pré-tratamentos e da hidrolise enzimática em diferentes biomassas. Outra parte da tese aborda a determinação da cristalinidade de celulose nativa (não extraída) de biomassa de bagaço de cana-de-açúcar. Utilizando a técnica de polarização cruzada em múltiplas etapas (Multi-CP) e um procedimento de subtração espectral, foi possível isolar os sinais de RMN da celulose nativa e a partir daí avaliar o índice de cristalinidade (CI). Esse método foi utilizado para avaliar o CI da celulose nativa de bagaço de cana-de-açúcar submetido à pré-tratamentos com H2SO4 e NaOH e os resultados não mostraram variações significativas do CI da celulose nas concentrações utilizadas, apesar do aumento da eficiência da hidrólise. Assim, ao contrário de muitos trabalhos encontrados na literatura, não parece que a cristalinidade da celulose seja um fator primordial no aumento de eficiência da hidrólise enzimática. Na parte final da tese, as interações intermoleculares entre os dois principais polissacarídeos da biomassa: celulose e xilano foram investigadas utilizando uma variedade de técnicas avançadas de RMN bidimensional. Neste trabalho, a arquitetura molecular de hastes de plantas de Arabidopsis Thaliana, sem nunca serem seca foi estudada. Utilizando a técnica refocused J-INADEQUATE (Increadible Natural Abundance Double Quantum Transfer Experiment via J coupling) observamos dois conjuntos de deslocamentos químicos distintos para o xilano, sendo um deles coincidente com aquele observado em solução. Em seguida, utilizamos experimentos SSNMR com o intuito de investigar se algum desses domínios de xilano estaria vinculado com a celulose. Experimentos CP-PDSD (Proton Driven Spin Diffusion detected via 13C through Cross-Polarization) demonstram a existência de proximidade espacial entre o novo domínio do xilano e o domínio da celulose. A comparação de resultados entre as amostras de padrão e o seu mutante deficiente em celulose (irx3) indicaram que o xilano com novo deslocamento químico é fortemente dependente da presença de celulose. A análise da mobilidade molecular pela técnica Dipolar Chemical Shift Correlation (DIPSHIFT), mostrou que as moléculas do novo domínio do xilano são altamente rígidas - uma característica partilhada com a celulose. Combinados, esses dados fornecem evidências de uma arquitetura molecular específica entre os dois polissacarídeos majoritários da parede celular.Solid-state nuclear magnetic resonance (SSNMR) was used to study the chemical composition and structure of plant cell wall components. Aiming the development of depolymerization strategies, SSNMR was initially used to study the effects of chemical and physical pre-treatments, as well as the enzymatic action on the structure and composition of biomasses. The results showed that, at low concentrations, pre-treatments with acids are highly effective for removal of hemicellulose without significant effect on lignin and cellulose. In turn, the alkaline pre-treatment promotes efficient delignification of the biomass. The minimum concentration of the alkaline solution required to achieve the maximum delignification depends on the type of biomass and treatment temperature. SSNMR studies were correlated with studies using other techniques, contributing to an in-depth understanding of the effect of pre-treatments and enzymatic hydrolysis in different biomasses. Another part of the thesis discusses is the determination of native cellulose crystallinity (not extracted) of sugarcane bagasse biomasses. Using the cross-polarization technique in multiple blocks (Multi-CP) and a spectral subtraction approach, it was possible to isolate the NMR signals of the native cellulose and to evaluate the crystallinity index (CI). This method was used to accessof the CI of cellulose in sugarcane bagasse samples pre-treated with H2SO4 and NaOH. The results did not show significant variations of the cellulose CI, at the concentration used here, despite the increase in the hydrolysis efficiency. Thus, in contrast to some studies in the literature, it does not appear that the crystallinity of cellulose is a primary limiting factor concerning the enzymatic hydrolysis efficiency in biomasses. In the final part of this thesis, the intermolecular interactions between the two main polysaccharides of the plant cell wall, cellulose and xylan, were investigated using advanced two-dimensional NMR techniques. The molecular architecture of 13C labelled never-dried Arabidopsis Thaliana stems was studied. Using refocused J-INADEQUATE (Increadible Natural Abundance Double Quantum Transfer Experiment via J coupling) we observed two distinct chemical shifts in xylan, one of which coincides with that observed in solution. Next, we used SSNMR experiments toinvestigate the interaction between the novel xylan and cellulose domains. CP-PDSD (Proton Driven Spin Diffusion detected via 13C through Cross-Polarization) experiments demonstrated spatial proximity between the new xylan and cellulose domains. The same approach was used to study cellulose deficient (irx3) mutants and the comparison between the results indicate that the new xylan domain is cellulose-dependent. Dipolar Chemical Shift Correlation (DIPSHIFT) experiments were performed to analyse the molecular mobility of these polysaccharides showing that the novel xylan is highly rigid - a characteristic which is shared with cellulose. Combined, these data provide evidence for a specific molecular architecture between the two most common polysaccharides in plant cell walls
Spectroscopic study of molecular dynamics and packing in organic semiconductors
Neste trabalho estudamos a dinâmica molecular e o empacotamento em semicondutores orgânicos com diferentes tamanhos de cadeias conjugada usando uma estratégia de multi-técnicas, em particular Ressonância Magnética Nuclear (RMN), espalhamento de Raios-X de alto ângulo (WAXS), Calorimetria Exploratória Diferencial (DSC), espectroscopia Raman e espectroscopias Ópticas de absorção UV-Vis e fluorescência. Nestes estudos utilizamos oligômeros de fluorenos, com 3, 5 e 7 unidades repetitivas e copolímeros multibloco conjugados/não-conjugados com as unidades conjugadas constituídas por unidades de fenileno de vinileno (PV) e as não-conjugadas formadas por unidades metilênicas. No estudo com oligômeros, foi mostrado que a capacidade e a forma de ordenamento das cadeias dependem do número de unidades repetitivas, com o Pentâmero possuindo uma tendência muito maior de cristalização. Essa conclusão foi suportada por cálculos teóricos ab-initio, que mostraram que a conformação de menor energia do pentâmero favorece as interações intercadeias e, portanto, o ordenamento de longo alcance. Os resultados referentes aos estudos de dinâmica molecular corroboraram essas características e mostraram que a ativação dos movimentos moleculares nas fases amorfas dos oligômeros são predominantemente dependentes dos comprimentos das cadeias oligoméricas, em concordância com o comportamento encontrado para as suas Tg´s. No estudo referente aos copolímeros multiblocos, foi encontrado que a presença dos grupos espaçadores alifáticos inibem a forte tendência de cristalização das unidades de PV, porém não impedem a agregação dessas unidades. Foi verificado que, a dispersão de tamanhos das unidades agregadas afeta fortemente as características de emissão dos copolímeros, onde a emissão nas cadeias maiores é privilegiada. No que diz respeito a dinâmica molecular, foi observado que a presença de movimentos na região alifática contribui para o aparecimento de processos de relaxação não radiativos o qual inibem a emissão dos copolímeros e provocam alargamento das bandas vibrônicas. Por fim, foi observado que movimentos isotrópicos das cadeias de PV são responsáveis pela transição vítrea dos copolímeros, sendo que as energias necessárias para ativar esses movimentos aumentam com o tamanho da cadeia. Portanto, de forma geral, nossos resultados indicam que mesmo em sistemas com comprimento de cadeias muito bem controlados, as fortes interações intermoleculares presentes em polímeros conjugados, podem tornar a morfologia em estado sólido desses sistemas bastante complexa, sendo que muitas das propriedades ópticas (e provavelmente também elétricas) são afetadas pela forma de empacotamento, desordem conformacional e térmica, além da própria constituição das cadeias.In this dissertation we present a study of the molecular dynamics and packing in organics semiconductor with different conjugated chains lengths using a of multi-techniques approach, in particular, Nuclear Magnetic Resonance (NMR), Wide Angle X-ray Scattering (WAXS), Differential Scanning Calorimetry (DSC), Raman spectroscopy, UV-Vis absorption and fluorescence spectroscopy. The studies were carried-in fluorene oligomers with 3, 5 and 7 repeat units and multi-block conjugated/non-conjugated copolymers with the conjugated part formed by phenylene-vinylene units (PV) and the non-conjugated block formed by methylene units. Concerning the oligomers studies, it was shown that the ability of the chain to form ordered domains as well as the domain structure depend on the number of repeat units, with the pentamer having a higher tendency to crystallization. This conclusion was supported by theoretical ab-initio calculations, which showed that the pentamer conformation favors inter-chain interactions and therefore long-range ordering. The molecular dynamics studies support these characteristics and showed that the activation of molecular motions in oligomers amorphous phase are predominantly dependent on the oligomeric chain lengths, in agreement with the behavior observed for their glass transitions (Tg´s). In the study concerning the multi-block copolymers, it was found that presence of the aliphatic chains inhibit the strong tendency to crystallization of the PV units, but do not prevent their aggregation. It was found that the dispersion in aggregated units sizes strongly affects the copolymers emission, with the emission of larger chains being privileged. Regarding the molecular dynamics, we observed that the presence of motion on aliphatic region contributes to the appearance of non-radiative relaxation processes that inhibit the emission of the copolymers and produce broadening of the vibronic bands. Finally, we observed that isotropic motions of the PV chains are responsible for the copolymers glass transition and the energy required to activate these movements increase with length of the chain. In summary, our results indicate that even in systems with well controlled chains length, the strong intermolecular interactions present in conjugated polymers, can make the solid state morphology of these systems quite complex, which may affect many optical (and probably electric) properties are affected by the packaging structure, thermal and conformational disorder, in addition to the constitution of the chains composition
The effect of the molecular structure of hydroxypropyl methylcellulose on the states of water, wettability, and swelling properties of cryogels prepared with and without CaO2
info:eu-repo/semantics/publishe
Understanding the effect of different chloride salts on the water behavior in the salted meat matrix along 180 days of shelf life
The objective of this study was to evaluate the effects of different chloride salts (NaCl, KCl, and CaCl2) on water behavior in salted meat during 180 days of shelf life by Low Field Nuclear Magnetic Resonance and physicochemical analysis. Four salted meat treatments were made using the following salts in the wet and dry salting steps: FC1: 100% NaCl; F1: 50% NaCl + 50% KCl; F2: 50% NaCl + 50% CaCl2; F3: 50% NaCl + 25% KCl + 25% CaCl2. The analyses performed were: moisture, pH, aw, weight loss and Low Field Nuclear Magnetic Resonance. The use of CaCl2 as a salt substitute to NaCl during the elaboration of salted meat caused a decrease of pH and higher values of aw and weight loss when compared with the treatments containing only NaCl or NaCl + KCl. The morphology of the salted meat changed with the addition of CaCl2, possibly making the matrix structure more open and facilitating dehydration, whereas the NaCI replacement by KCI did not cause significant modifications in salted meat characteristics during 180 days of storage. In general, the results demonstrated that the addition of KCl may be a good alternative to reduce the sodium content in salted meat product, and the Low Field Nuclear Magnetic Resonance method has proved a good tool for obtaining additional information on the changes that salts can cause in the structure of salted meat products125CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQ140533/2015-0, 406671/2016-
Correlation Between Molecular Conformation, Packing, and Dynamics in Oligofluorenes: A Theoretical/Experimental Study
Fluorene-based systems have shown great potential as components in organic electronics and optoelectronics (organic photovoltaics, OPVs, organic light emitting diodes, OLEDs, and organic transistors, OTFTs). These systems have drawn attention primarily because they exhibit strong blue emission associated with relatively good thermal stability. It is well-known that the electronic properties of polymers are directly related to the molecular conformations and chain packing of polymers. Here, we used three oligofluorenes (trimer, pentamer, and heptamer) as model systems to theoretically investigate the conformational properties of fluorene molecules, starting with the identification of preferred conformations. The hybrid exchange correlation functional, OPBE, and ZINDO/S-CI showed that each oligomer exhibits a tendency to adopt a specific chain arrangement, which could be distinguished by comparing their UV/vis electronic absorption and C-13 NMR spectra. This feature was used to identify the preferred conformation of the oligomer chains in chloroform-cast films by comparing experimental and theoretical UV/vis and C-13 NMR spectra. Moreover, the oligomer chain packing and dynamics in the films were studied by DSC and several solid state NMR techniques, which indicated that the phase behavior of the films may be influenced by the tendency that each oligomeric chain has to adopt a given conformation.FAPESP [2009/18354-8, 2007/08688-0]FAPESPCAPESCAPES [PNPD0052086]CNPq [579190/2008-0]CNPqNational Institute of Science and Technology on Organic Electronics (INEO)National Institute of Science and Technology on Organic Electronics (INEO
Understanding the Performance of Plant Protein Concentrates as Partial Meat Substitutes in Hybrid Meat Emulsions
Hybrid meat products are an excellent strategy to incorporate plant proteins into traditional meat formulations considering recent market trends focusing on the partial reduction in red meat content. In this work, we evaluated the effects of different concentrated plant proteins (soy, pea, fava bean, rice, and sunflower) in partially replacing meat in meat emulsion model systems. Soy, pea, and sunflower proteins showed great compatibility with the meat matrix, giving excellent emulsion stability and a cohesive protein network with good fat distribution. Otherwise, adding rice and fava bean proteins resulted in poor emulsion stability. Color parameters were affected by the intrinsic color of plant proteins and due to the reduction in myoglobin content. Both viscoelastic moduli, G′ and G″ decreased with the incorporation of plant proteins, especially for rice and fava bean. The temperature sweep showed that myosin denaturation was the dominant effect on the G′ increase. The water mobility was affected by plant proteins and the proportion between immobilized and intermyofibrillar water was quite different among treatments, especially those with fava bean and rice proteins. In vitro protein digestibility was lower for hybrid meat emulsion elaborated with rice protein. It is concluded that soy, pea, and mainly sunflower proteins have suitable compatibility with the meat matrix in emulsified products