2,466 research outputs found

    Simulation of laser-Compton cooling of electron beams for future linear colliders

    Get PDF
    We study a method of laser-Compton cooling of electron beams for future linear colliders. Using a Monte Carlo code, we evaluate the effects of the laser-electron interaction for transverse cooling. The optics with and without chromatic correction for the cooling are examined. The laser-Compton cooling for JLC/NLC at E0=2E_0=2 GeV is considered.Comment: 18 pages, 12 figures, 21st ICFA Beam Dynamics Workshop on Laser-Beam Interactions, Stony Brook, New York, June 11-15, 200

    On the basic mechanism of Pixelized Photon Detectors

    Full text link
    A Pixelized Photon Detector (PPD) is a generic name for the semiconductor devices operated in the Geiger-mode, such as Silicon PhotoMultiplier and Multi-Pixel Photon Counter, which has high photon counting capability. While the internal mechanisms of the PPD have been intensively studied in recent years, the existing models do not include the avalanche process. We have simulated the multiplication and quenching of the avalanche process and have succeeded in reproducing the output waveform of the PPD. Furthermore our model predicts the existence of dead-time in the PPD which has never been numerically predicted. For serching the dead-time, we also have developed waveform analysis method using deconvolution which has the potential to distinguish neibouring pulses precisely. In this paper, we discuss our improved model and waveform analysis method.Comment: 4pages, 5figures, To appear in the proceedings of 5th International Conference on New Developments in Photodetection (NDIP08), Aix-les-Bains, France, 15-20 Jun 200

    Performance of Multi-Pixel Photon Counters for the T2K near detectors

    Full text link
    We have developed a Multi-Pixel Photon Counter (MPPC) for the neutrino detectors of T2K experiment. About 64,000 MPPCs have been produced and tested in about a year. In order to characterize a large number of MPPCs, we have developed a system that simultaneously measures 64 MPPCs with various bias voltage and temperature. The performance of MPPCs are found to satisfy the requirement of T2K experiment. In this paper, we present the performance of 17,686 MPPCs measured at Kyoto University.Comment: 15 pages, 14 figure

    Small Angle Crab Compensation for LHC IR Upgrade

    Get PDF
    A small angle crab scheme is being considered for the LHC luminosity upgrade. In this paper we present a 400MHz superconducting cavity design and discuss the pertinent RF challenges. We also present a study on the beam-beam performance and proton-beam emittance growth in the presence of crab compensation, with RF noise sources

    Beam-beam simulation code BBSIM for particle accelerators

    Full text link
    A highly efficient, fully parallelized, six-dimensional tracking model for simulating interactions of colliding hadron beams in high energy ring colliders and simulating schemes for mitigating their effects is described. The model uses the weak-strong approximation for calculating the head-on interactions when the test beam has lower intensity than the other beam, a look-up table for the efficient calculation of long-range beam-beam forces, and a self-consistent Poisson solver when both beams have comparable intensities. A performance test of the model in a parallel environment is presented. The code is used to calculate beam emittance and beam loss in the Tevatron at Fermilab and compared with measurements. We also present results from the studies of two schemes proposed to compensate the beam-beam interactions: a) the compensation of long-range interactions in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven and the Large Hadron Collider (LHC) at CERN with a current-carrying wire, b) the use of a low energy electron beam to compensate the head-on interactions in RHIC
    • 

    corecore