40 research outputs found

    Local Sensitivity to Stimulus Orientation and Spatial Frequency within the Receptive Fields of Neurons in Visual Area 2 (V2) of Macaque Monkeys

    Get PDF
    We used dynamic dense noise stimuli and local spectral reverse correlation methods to reveal the local sensitivities of neurons in visual area 2 (V2) of macaque monkeys to orientation and spatial frequency within their receptive fields. This minimized the potentially confounding assumptions that are inherent in stimulus selections. The majority of neurons exhibited a relatively high degree of homogeneity for the preferred orientations and spatial frequencies in the spatial matrix of facilitatory subfields. However, about 20% of all neurons showed maximum orientation differences between neighboring subfields that were greater than 25 deg. The neurons preferring horizontal or vertical orientations showed less inhomogeneity in space than the neurons preferring oblique orientations. Over 50% of all units also exhibited suppressive profiles, and those were more heterogeneous than facilitatory profiles. The preferred orientation and spatial frequency of suppressive profiles differed substantially from those of facilitatory profiles, and the neurons with suppressive subfields had greater orientation selectivity than those without suppressive subfields. The peak suppression occurred with longer delays than the peak facilitation. These results suggest that the receptive field profiles of the majority of V2 neurons reflect the orderly convergence of V1 inputs over space, but that a subset of V2 neurons exhibit more complex response profiles having both suppressive and facilitatory subfields. These V2 neurons with heterogeneous subfield profiles could play an important role in the initial processing of complex stimulus features

    Early monocular defocus disrupts the normal development of receptive-field structure in V2 neurons of macaque monkeys

    Get PDF
    Experiencing different quality images in the two eyes soon after birth can cause amblyopia, a developmental vision disorder. Amblyopic humans show the reduced capacity for judging the relative position of a visual target in reference to nearby stimulus elements (position uncertainty) and often experience visual image distortion. Although abnormal pooling of local stimulus information by neurons beyond striate cortex (V1) is often suggested as a neural basis of these deficits, extrastriate neurons in the amblyopic brain have rarely been studied using microelectrode recording methods. The receptive field (RF) of neurons in visual area V2 in normal monkeys is made up of multiple subfields that are thought to reflect V1 inputs and are capable of encoding the spatial relationship between local stimulus features. We created primate models of anisometropic amblyopia and analyzed the RF subfield maps for multiple nearby V2 neurons of anesthetized monkeys by using dynamic two-dimensional noise stimuli and reverse correlation methods. Unlike in normal monkeys, the subfield maps of V2 neurons in amblyopic monkeys were severely disorganized: subfield maps showed higher heterogeneity within each neuron as well as across nearby neurons. Amblyopic V2 neurons exhibited robust binocular suppression and the strength of the suppression was positively correlated with the degree of hereogeneity and the severity of amblyopia in individual monkeys. Our results suggest that the disorganized subfield maps and robust binocular suppression of amblyopic V2 neurons are likely to adversely affect the higher stages of cortical processing resulting in position uncertainty and image distortion

    Supranormal orientation selectivity of visual neurons in orientation-restricted animals

    Get PDF
    Altered sensory experience in early life often leads to remarkable adaptations so that humans and animals can make the best use of the available information in a particular environment. By restricting visual input to a limited range of orientations in young animals, this investigation shows that stimulus selectivity, e.g., the sharpness of tuning of single neurons in the primary visual cortex, is modified to match a particular environment. Specifically, neurons tuned to an experienced orientation in orientation-restricted animals show sharper orientation tuning than neurons in normal animals, whereas the opposite was true for neurons tuned to non-experienced orientations. This sharpened tuning appears to be due to elongated receptive fields. Our results demonstrate that restricted sensory experiences can sculpt the supranormal functions of single neurons tailored for a particular environment. The above findings, in addition to the minimal population response to orientations close to the experienced one, agree with the predictions of a sparse coding hypothesis in which information is represented efficiently by a small number of activated neurons. This suggests that early brain areas adopt an efficient strategy for coding information even when animals are raised in a severely limited visual environment where sensory inputs have an unnatural statistical structure

    CMSに基づく医学/生物学分野向け文献管理データベース

    Get PDF
    PubMed (http://www.nxbi.nlm.nih.gou/entrez/) is the standard public database system for publications in medical and biological fields. Every registered paper in this database is assigned a unique ID number, PMID. Detailed information for a given paper can be obtained from the database using PMID as a key. Recently, applications of Content Management System (CMS) have become widespread for constructing WWW portal sites. Taking advantage of these resources for neuroinformatics. we have applied the CMS technologies for providing a data sharing environment in the laboratory. In this paper, we present a bibliographic database module, PubMedPDF, which can be used on a PHP- based CMS, XOOPS. The module is capable of managing PDF (Portable Document Format) reprint files in addition to their bibliographical information provided by PubMed. Registered literature information is automatically indexed based on the title, authors, year of publication, journal and key words in abstracts. The system may be highly useful for literature management not only for personal or laboratory use, but also for neuroinformatics portal sites

    Time Course of Cross-Orientation Suppression in the Early Visual Cortex

    No full text

    Encoding of Three-Dimensional Surface Slant in Cat Visual Areas 17 and 18

    No full text
    corecore