2,444 research outputs found

    Plane-wave based electronic structure calculations for correlated materials using dynamical mean-field theory and projected local orbitals

    Full text link
    The description of realistic strongly correlated systems has recently advanced through the combination of density functional theory in the local density approximation (LDA) and dynamical mean field theory (DMFT). This LDA+DMFT method is able to treat both strongly correlated insulators and metals. Several interfaces between LDA and DMFT have been used, such as (N-th order) Linear Muffin Tin Orbitals or Maximally localized Wannier Functions. Such schemes are however either complex in use or additional simplifications are often performed (i.e., the atomic sphere approximation). We present an alternative implementation of LDA+DMFT, which keeps the precision of the Wannier implementation, but which is lighter. It relies on the projection of localized orbitals onto a restricted set of Kohn-Sham states to define the correlated subspace. The method is implemented within the Projector Augmented Wave (PAW) and within the Mixed Basis Pseudopotential (MBPP) frameworks. This opens the way to electronic structure calculations within LDA+DMFT for more complex structures with the precision of an all-electron method. We present an application to two correlated systems, namely SrVO3 and beta-NiS (a charge-transfer material), including ligand states in the basis-set. The results are compared to calculations done with Maximally Localized Wannier functions, and the physical features appearing in the orbitally resolved spectral functions are discussed.Comment: 15 pages, 17 figure

    Photometric Observations of Star Formation Activity in Early Type Spirals

    Full text link
    We observationally study the current star formation activities of early type spiral galaxies. We construct a complete sample of 15 early type spirals having far-infrared (FIR) to optical B band luminosity ratios, L(FIR)/L(B), larger than the average of the type, and make their CCD imaging of the R and H-alpha bands. The equivalent widths of H-alpha emission increase with increasing L(FIR)/L(B), indicating that L(FIR)/L(B) can be an indicator of star formation for such early type spirals with star formation activities higher than the average. For all of the observed early type spirals, the extended HII regions exist at the central regions with some asymmetric features. H-alpha emission is more concentrated to the galactic center than the R band light, and the degree of the concentration increases with the star formation activity. We also analyze the relation between the star formation activities and the existence of companion galaxies in the sample galaxies and other bright early type spirals. No correlation is found and this suggests that the interaction is not responsible for all of the star formation activities of early type spirals.Comment: LaTex, 23 pages (2 tables included), plus 9 Postscript figures & 1 table. To be published in AJ (November issue

    Temperature dependence of current self-oscillations and electric field domains in sequential tunneling doped superlattices

    Full text link
    We examine how the current--voltage characteristics of a doped weakly coupled superlattice depends on temperature. The drift velocity of a discrete drift model of sequential tunneling in a doped GaAs/AlAs superlattice is calculated as a function of temperature. Numerical simulations and theoretical arguments show that increasing temperature favors the appearance of current self-oscillations at the expense of static electric field domain formation. Our findings agree with available experimental evidence.Comment: 7 pages, 5 figure

    Lattice dynamics of MgSiO3_3 perovskite (bridgmanite) studied by inelastic x-ray scattering and ab initio calculations

    Full text link
    We have determined the lattice dynamics of MgSiO3_3 perovskite (bridgmanite) by a combination of single-crystal inelastic x-ray scattering and ab initio calculations. We observe a remarkable agreement between experiment and theory, and provide accurate results for phonon dispersion relations, phonon density of states and the full elasticity tensor. The present work constitutes an important milestone to extend this kind of combined studies to extreme conditions of pressure and temperature, directly relevant for the physics and the chemistry of Earth's lower mantle
    corecore