304 research outputs found

    Exotic radiation from a photonic crystal excited by an ultra-relativistic electron beam

    Get PDF
    We report the observation of an exotic radiation (unconventional Smith-Purcell radiation) from a one-dimensional photonic crystal. The physical origin of the exotic radiation is direct excitation of the photonic bands by an ultra-relativistic electron beam. The spectrum of the exotic radiation follows photonic bands of a certain parity, in striking contrast to the conventional Smith-Purcell radiation, which shows solely a linear dispersion. Key ingredients for the observation are the facts that the electron beam is in an ultra-relativistic region and that the photonic crystal is finite. The origin of the radiation was identified by comparison of experimental and theoretical results.Comment: 4 pages, 5 figure

    Fermi Edge Singularities and Backscattering in a Weakly Interacting 1D Electron Gas

    Full text link
    The photon-absorption edge in a weakly interacting one-dimensional electron gas is studied, treating backscattering of conduction electrons from the core hole exactly. Close to threshold, there is a power-law singularity in the absorption, I(Ï”)∝ϔ−αI(\epsilon) \propto \epsilon^{-\alpha}, with α=3/8+ÎŽ+/π−Ύ+2/2π2\alpha = 3/8 + \delta_+/\pi - \delta_+^2/2\pi^2 where ÎŽ+\delta_+ is the forward scattering phase shift of the core hole. In contrast to previous theories, α\alpha is finite (and universal) in the limit of weak core hole potential. In the case of weak backscattering U(2kF)U(2k_F), the exponent in the power-law dependence of absorption on energy crosses over to a value α=ÎŽ+/π−Ύ+2/2π2\alpha = \delta_+/\pi - \delta_+^2/2\pi^2 above an energy scale ϔ∗∌[U(2kF)]1/Îł\epsilon^* \sim [U(2k_F)]^{1/\gamma}, where Îł\gamma is a dimensionless measure of the electron-electron interactions.Comment: 8 pages + 1 postscript figure, preprint TPI-MINN-93/40-

    Photonic Band Gaps of Three-Dimensional Face-Centered Cubic Lattices

    Full text link
    We show that the photonic analogue of the Korringa-Kohn-Rostocker method is a viable alternative to the plane-wave method to analyze the spectrum of electromagnetic waves in a three-dimensional periodic dielectric lattice. Firstly, in the case of an fcc lattice of homogeneous dielectric spheres, we reproduce the main features of the spectrum obtained by the plane wave method, namely that for a sufficiently high dielectric contrast a full gap opens in the spectrum between the eights and ninth bands if the dielectric constant ϔs\epsilon_s of spheres is lower than the dielectric constant ϔb\epsilon_b of the background medium. If ϔs>ϔb\epsilon_s> \epsilon_b, no gap is found in the spectrum. The maximal value of the relative band-gap width approaches 14% in the close-packed case and decreases monotonically as the filling fraction decreases. The lowest dielectric contrast ϔb/ϔs\epsilon_b/\epsilon_s for which a full gap opens in the spectrum is determined to be 8.13. Eventually, in the case of an fcc lattice of coated spheres, we demonstrate that a suitable coating can enhance gap widths by as much as 50%.Comment: 19 pages, 6 figs., plain latex - a section on coated spheres, two figures, and a few references adde

    Strong quantum memory at resonant Fermi edges revealed by shot noise

    Get PDF
    Studies of non-equilibrium current fluctuations enable assessing correlations involved in quantum transport through nanoscale conductors. They provide additional information to the mean current on charge statistics and the presence of coherence, dissipation, disorder, or entanglement. Shot noise, being a temporal integral of the current autocorrelation function, reveals dynamical information. In particular, it detects presence of non-Markovian dynamics, i.e., memory, within open systems, which has been subject of many current theoretical studies. We report on low-temperature shot noise measurements of electronic transport through InAs quantum dots in the Fermi-edge singularity regime and show that it exhibits strong memory effects caused by quantum correlations between the dot and fermionic reservoirs. Our work, apart from addressing noise in archetypical strongly correlated system of prime interest, discloses generic quantum dynamical mechanism occurring at interacting resonant Fermi edges.Comment: 6 pages, 3 figure

    Resonance-Induced Effects in Photonic Crystals

    Get PDF
    For the case of a simple face-centered-cubic photonic crystal of homogeneous dielectric spheres, we examine to what extent single-sphere Mie resonance frequencies are related to band gaps and whether the width of a gap can be enlarged due to nearby resonances. Contrary to some suggestions, no spectacular effects may be expected. When the dielectric constant of the spheres Ï”s\epsilon_s is greater than the dielectric constant Ï”b\epsilon_b of the background medium, then for any filling fraction ff there exists a critical Ï”c\epsilon_c above which the lowest lying Mie resonance frequency falls inside the lowest stop gap in the (111) crystal direction, close to its midgap frequency. If Ï”s<Ï”b\epsilon_s <\epsilon_b, the correspondence between Mie resonances and both the (111) stop gap and a full gap does not follow such a regular pattern. If the Mie resonance frequency is close to a gap edge, one can observe a resonance-induced widening of a relative gap width by ≈5\approx 5%.Comment: 14 pages, 3 figs., RevTex. For more info look at http://www.amolf.nl/external/wwwlab/atoms/theory/index.htm

    Relative energetics and structural properties of zirconia using a self-consistent tight-binding model

    Full text link
    We describe an empirical, self-consistent, orthogonal tight-binding model for zirconia, which allows for the polarizability of the anions at dipole and quadrupole levels and for crystal field splitting of the cation d orbitals. This is achieved by mixing the orbitals of different symmetry on a site with coupling coefficients driven by the Coulomb potentials up to octapole level. The additional forces on atoms due to the self-consistency and polarizabilities are exactly obtained by straightforward electrostatics, by analogy with the Hellmann-Feynman theorem as applied in first-principles calculations. The model correctly orders the zero temperature energies of all zirconia polymorphs. The Zr-O matrix elements of the Hamiltonian, which measure covalency, make a greater contribution than the polarizability to the energy differences between phases. Results for elastic constants of the cubic and tetragonal phases and phonon frequencies of the cubic phase are also presented and compared with some experimental data and first-principles calculations. We suggest that the model will be useful for studying finite temperature effects by means of molecular dynamics.Comment: to be published in Physical Review B (1 march 2000

    Metallo-dielectric diamond and zinc-blende photonic crystals

    Full text link
    It is shown that small inclusions of a low absorbing metal can have a dramatic effect on the photonic band structure. In the case of diamond and zinc-blende photonic crystals, several complete photonic band gaps (CPBG's) can open in the spectrum, between the 2nd-3rd, 5th-6th, and 8th-9th bands. Unlike in the purely dielectric case, in the presence of small inclusions of a low absorbing metal the largest CPBG for a moderate dielectric constant (epsilon<=10) turns out to be the 2nd-3rd CPBG. The 2nd-3rd CPBG is the most important CPBG, because it is the most stable against disorder. For a diamond and zinc-blende structure of nonoverlapping dielectric and metallo-dielectric spheres, a CPBG begins to decrease with an increasing dielectric contrast roughly at the point where another CPBG starts to open--a kind of gap competition. A CPBG can even shrink to zero when the dielectric contrast increases further. Metal inclusions have the biggest effect for the dielectric constant 2<=epsilon<=12, which is a typical dielectric constant at near infrared and in the visible for many materials, including semiconductors and polymers. It is shown that one can create a sizeable and robust 2nd-3rd CPBG at near infrared and visible wavelengths even for a photonic crystal which is composed of more than 97% low refractive index materials (n<=1.45, i.e., that of silica glass or a polymer). These findings open the door for any semiconductor and polymer material to be used as genuine building blocks for the creation of photonic crystals with a CPBG and significantly increase the possibilities for experimentalists to realize a sizeable and robust CPBG in the near infrared and in the visible. One possibility is a construction method using optical tweezers, which is analyzed here.Comment: 25 pp, 23 figs, RevTex, to appear in Phys Rev B. For more information look at http://www.amolf.nl/research/photonic_materials_theory/moroz/moroz.htm

    Exact calculation of spectral properties of a particle interacting with a one dimensional fermionic system

    Full text link
    Using the Bethe ansatz analysis as was reformulated by Edwards, we calculate the spectral properties of a particle interacting with a bath of fermions in one dimension for the case of equal particle-fermion masses. These are directly related to singularities apparent in optical experiments in one dimensional systems. The orthogonality catastrophe for the case of an infinite particle mass survives in the limit of equal masses. We find that the exponent ÎČ\beta of the quasiparticle weight, Z≃N−ÎČZ\simeq N^{-\beta} is different for the two cases, and proportional to their respective phaseshifts at the Fermi surface; we present a simple physical argument for this difference. We also show that these exponents describe the low energy behavior of the spectral function, for repulsive as well as attractive interaction.Comment: 22 pages + 1 postscript figure, REVTE

    Exact Fermi-edge singularity exponent in a Luttinger liquid

    Full text link
    We report the exact calculation of the Fermi-edge singularity exponent for correlated electrons in one dimension (Luttinger liquid). Focusing on the special interaction parameter g=1/2, the asymptotic long-time behavior can be obtained using the Wiener-Hopf method. The result confirms the previous assumption of an open boundary fixed point. In addition, a dynamic k-channel Kondo impurity is studied via Abelian bosonization for k=2 and k=4. It is shown that the corresponding orthogonality exponents are related to the orthogonality exponent in a Luttinger liquid.Comment: 8 Pages RevTeX, no figure

    Fermi-edge singularities in linear and non-linear ultrafast spectroscopy

    Get PDF
    We discuss Fermi-edge singularity effects on the linear and nonlinear transient response of an electron gas in a doped semiconductor. We use a bosonization scheme to describe the low energy excitations, which allows to compute the time and temperature dependence of the response functions. Coherent control of the energy absorption at resonance is analyzed in the linear regime. It is shown that a phase-shift appears in the coherent control oscillations, which is not present in the excitonic case. The nonlinear response is calculated analytically and used to predict that four wave-mixing experiments would present a Fermi-edge singularity when the exciting energy is varied. A new dephasing mechanism is predicted in doped samples that depends linearly on temperature and is produced by the low-energy bosonic excitations in the conduction band.Comment: long version; 9 pages, 4 figure
    • 

    corecore